Issue |
A&A
Volume 550, February 2013
|
|
---|---|---|
Article Number | L5 | |
Number of page(s) | 5 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201220712 | |
Published online | 24 January 2013 |
The binary Be star δ Scorpii at high spectral and spatial resolution
II. The circumstellar disk evolution after the periastron⋆,⋆⋆
1
Laboratoire Lagrange, UMR 7293 Université de Nice-Sophia Antipolis (UNS),
Observatoire de la Côte d’Azur (OCA), Boulevard de l’Observatoire,
BP 4229,
06304
Nice Cedex 4,
France
e-mail: ame@oca.eu
2
Physics and Astronomy Department, The University of Western
Ontario, London, N6A
3K7, Ontario,
Canada
3
UJF-Grenoble 1/CNRS-INSU, IPAG UMR 5274,
38041
Grenoble,
France
4
INAF – Osservatorio Astrofisico di Arcetri, Istituto Nazionale di
Astrofisica, Largo E. Fermi 5, 50125
Firenze,
Italy
5
Max-Planck-Institut für Radioastronomie,
Auf dem Hügel 69,
53121
Bonn,
Germany
Received: 9 November 2012
Accepted: 20 December 2012
Context. Classical Be stars are hot non-supergiant stars surrounded by a gaseous circumstellar disk that is responsible for the observed infrared (IR) excess and emission lines. The influence of binarity on these phenomena remains controversial.
Aims. We followed the evolution of the environment surrounding the binary Be star δ Scorpii one year before and one year after the 2011 periastron to check for any evidence of a strong interaction between its companion and the primary circumstellar disk.
Methods. We used the VLTI/AMBER spectro-interferometric instrument operating in the K band in high (12 000) spectral resolution to obtain information on both the disk geometry and kinematics. Observations were carried out in two emission lines: Brγ (2.172 μm) and He i (2.056 μm).
Results. We detected some important changes in δ Scorpii’s circumstellar disk geometry between the first observation made in April 2010 and the new observation made in June 2012. During the last two years the disk has grown at a mean velocity of 0.2 km s-1. This is compatible with the expansion velocity previously found during the 2001−2007 period. The disk was also found to be asymmetric at both epochs, but with a different morphology in 2010 and 2012.
Conclusions. Considering the available spectroscopic data showing that the main changes in the emission-line profiles occurred quickly during the periastron, it is probable that the differences between the 2010 and 2012 disk geometry seen in our interferometric data stem from a disk perturbation caused by the companion tidal effects. However, taking into account that no significant changes have occurred in the disk since the end of the 2011 observing season, it is difficult to understand how this induced inhomogeneity has been “frozen” in the disk for such a long period.
Key words: stars: emission-line, Be / stars: winds, outflows / circumstellar matter / binaries: general
Based on observations made with ESO telecopes at La Silla Paranal Observatory under GTO programme IDs 089.D-0105(A) and 089.D-0105(B).
Figure 3 is available in electronic form at http://www.aanda.org
© ESO, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.