Issue |
A&A
Volume 549, January 2013
|
|
---|---|---|
Article Number | A77 | |
Number of page(s) | 12 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201220099 | |
Published online | 21 December 2012 |
The accretion disk in the post period-minimum cataclysmic variable SDSS J080434.20 + 510349.2⋆
Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Apdo. Postal 877, Ensenada, Baja California, 22800 Mexico, Mexico
e-mail: zhar@astrosen.unam.mx
Received: 24 July 2012
Accepted: 27 October 2012
Aims. This study of SDSS J080434.20+510349.2 is primarily concerned with the double-hump shape in the light curve and its connection with the accretion disk in this bounce-back system.
Methods. Time-resolved photometric and spectroscopic observations were obtained to analyze the behavior of the system between superoutbursts. A qualitative geometric model of a binary system containing a disk with two outer annuli spiral density waves was applied to explain the light curve and the Doppler tomography.
Results. Observations were carried out during 2008−2009, after the object’s magnitude decreased to V ~ 17.7 ± 0.1 from the March 2006 eruption. The light curve clearly shows a sinusoid-like variability with a 0.07 mag amplitude and a 42.48 min periodicity, which is half of the orbital period of the system. In September 2010, the system underwent yet another superoutburst and returned to its quiescent level by the beginning of 2012. This light curve once again showed a double-hump-shape, but with a significantly smaller (~0.01 mag) amplitude. Other types of variability like a “mini-outburst” or SDSS1238-like features were not detected. Doppler tomograms, obtained from spectroscopic data during the same period of time, show a large accretion disk with uneven brightness, implying the presence of spiral waves.
Conclusions. We constructed a geometric model of a bounce-back system containing two spiral density waves in the outer annuli of the disk to reproduce the observed light curves. The Doppler tomograms and the double-hump-shape light curves in quiescence can be explained by a model system containing a massive ≥0.7 M⊙ white dwarf with a surface temperature of ~12 000 K, a late-type brown dwarf, and an accretion disk with two outer annuli spirals. According to this model, the accretion disk should be large, extending to the 2:1 resonance radius, and cool (~2500 K). The inner parts of the disk should be optically thin in the continuum or totally void.
Key words: novae, cataclysmic variables / stars: dwarf novae / stars: individual: SDSS J080434.20+510349.2
Photometry and reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A77
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.