Issue |
A&A
Volume 548, December 2012
|
|
---|---|---|
Article Number | A113 | |
Number of page(s) | 24 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201219792 | |
Published online | 30 November 2012 |
The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel⋆,⋆⋆
I. Evidence of clumps, multiple arcs, and a linear bar-like structure
1 Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
e-mail: Leen.Decin@ster.kuleuven.be
2 Sterrenkundig Instituut Anton Pannekoek, University of Amsterdam, Science Park 904, 1098 Amsterdam, The Netherlands
3 University of Denver, 2112 E. Wesley Ave, Denver CO 80208, USA
4 University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, 1180 Vienna, Austria
5 Dept. of Physics & Astronomy, University College London, Gower St, London WC1E 6BT, UK
6 Koninklijke Sterrenwacht van België, Ringlaan 3, 1180 Brussel, Belgium
7 Space Science and Technology Department, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK
8 School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK
9 Space Science and Technology Department, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK
10 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
Received: 11 June 2012
Accepted: 11 October 2012
Context. The interaction between stellar winds and the interstellar medium (ISM) can create complex bow shocks. The photometers on board the Herschel Space Observatory are ideally suited to studying the morphologies of these bow shocks.
Aims. We aim to study the circumstellar environment and wind-ISM interaction of the nearest red supergiant, Betelgeuse.
Methods.Herschel PACS images at 70, 100, and 160 μm and SPIRE images at 250, 350, and 500 μm were obtained by scanning the region around Betelgeuse. These data were complemented with ultraviolet GALEX data, near-infrared WISE data, and radio 21 cm GALFA-HI data. The observational properties of the bow shock structure were deduced from the data and compared with hydrodynamical simulations.
Results. The infrared Herschel images of the environment around Betelgeuse are spectacular, showing the occurrence of multiple arcs at ~6–7′ from the central target and the presence of a linear bar at ~9′. Remarkably, no large-scale instabilities are seen in the outer arcs and linear bar. The dust temperature in the outer arcs varies between 40 and 140 K, with the linear bar having the same colour temperature as the arcs. The inner envelope shows clear evidence of a non-homogeneous clumpy structure (beyond 15′′), probably related to the giant convection cells of the outer atmosphere. The non-homogeneous distribution of the material even persists until the collision with the ISM. A strong variation in brightness of the inner clumps at a radius of ~2′ suggests a drastic change in mean gas and dust density ~32 000 yr ago. Using hydrodynamical simulations, we try to explain the observed morphology of the bow shock around Betelgeuse.
Conclusions. Different hypotheses, based on observational and theoretical constraints, are formulated to explain the origin of the multiple arcs and the linear bar and the fact that no large-scale instabilities are visible in the bow shock region. We infer that the two main ingredients for explaining these phenomena are a non-homogeneous mass-loss process and the influence of the Galactic magnetic field. The hydrodynamical simulations show that a warm interstellar medium, reflecting a warm neutral or partially ionized medium, or a higher temperature in the shocked wind also prevent the growth of strong instabilities. The linear bar is probably an interstellar structure illuminated by Betelgeuse itself.
Key words: stars: AGB and post-AGB / stars: mass-loss / circumstellar matter / stars: individual: Betelgeuse / methods: numerical / infrared: stars
Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Appendices (including movies) are available in electronic form at http://www.aanda.org
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.