Issue |
A&A
Volume 547, November 2012
|
|
---|---|---|
Article Number | A23 | |
Number of page(s) | 5 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201218972 | |
Published online | 22 October 2012 |
On the true shape of the upper end of the stellar initial mass function
The case of R136
Argelander-Institut für Astronomie,
Auf dem Hügel 71,
53121
Bonn,
Germany
e-mail: sambaran@astro.uni-bonn.de; pavel@astro.uni-bonn.de
Received: 6 February 2012
Accepted: 30 August 2012
Context. The shape of the stellar initial mass function (IMF) of a star cluster near its upper mass limit is a focal topic of investigation as it determines the high mass stellar content and hence the dynamics of the cluster at its embedded phase as well as during its young gas-free phase. The massive stellar content of a young cluster, however, can be substantially modified due to the dynamical ejections of the massive stars so that the present-day high-mass stellar mass function (hereafter MF) can be different than that with which the cluster is born.
Aims. In the present study, we provide a preliminary estimate of this evolution of the high-mass IMF of a young cluster due to early ejections of massive stars, using the Large Magellanic Cloud massive, young cluster R136 as an example.
Methods. To that end, we utilize the results of the state-of-the-art calculations by Banerjee et al. (2012, ApJ, 746, 15) comprising direct N-body computations of realistic, binary-rich, mass-segregated models of R136. In particular, these calculations provide the ejection fraction of stars as a function of stellar mass.
Results. We find that if the measured IMF of R136 is granted to be canonical, as observations indicate, then the “true” high-mass IMF of R136 at its birth must be at least moderately top-heavy when corrected for the dynamical escape of massive stars.
Conclusions. The top-heaviness of the true high-mass IMF over the observationally determined one is a general feature of massive, young clusters where the dynamical ejection of massive stars is efficient. We discuss its implications and possible improvements over our current estimate.
Key words: galaxies: star clusters: general / methods: numerical / open clusters and associations: individual: R136 / stars: kinematics and dynamics / stars: luminosity function, mass function / stars: massive
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.