Issue |
A&A
Volume 546, October 2012
|
|
---|---|---|
Article Number | A81 | |
Number of page(s) | 6 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201219886 | |
Published online | 09 October 2012 |
Implantation of multiply charged carbon ions in water ice
1
Centre de Recherche sur les Ions, les Matériaux et la Photonique
(CEA/CNRS/ENSICAEN/UCBN), CIMAP – CIRIL – GANIL, Boulevard Henri Becquerel, BP 5133
14070, Caen Cedex 05, France
e-mail: lv@ganil.fr
2
School of Nuclear Science and Technology, Lanzhou
University, 730000
Lanzhou, PR
China
3
Departamento de Disciplinas Básicas e Gerais,
CEFET-RJ, Av. Maracanã 229,
20271-110
Rio de Janeiro, RJ, Brazil
4
Departamento de Física, Pontifícia Universidade Católica do Rio de
Janeiro, Rua Marquês de São Vicente
225, 22451-900,
Rio de Janeiro, RJ, Brazil
5
Laboratory for Atomic and Surface Physics, University of
Virginia, 351 McCormick
Road, PO Box
400238, Charlottesville, VA
22904-4238,
USA
6
Centre for Plasma Physics, School of Mathematics and Physics,
Queen’s University, Belfast, Belfast BT7
1NN, Northern Ireland
7
Department of Physics and Astronomy, The Open
University, Walton
Hall, Milton
Keynes, UK
8
INAF Osservatorio Astrofisico di Catania,
Catania,
Italy
9
IPD/UNIVAP, Av. Shishima Hifumi, 2911 São Jose dos Campos, SP, Brazil
Received: 25 June 2012
Accepted: 28 July 2012
Context. Several objects in the solar system like Europa, Ganymede, and Callisto have frozen surface (main component: H2O). The associated thickness is bigger than the penetration depth of the relevant projectile ions. Additionally, other species such as H2O2, SO2, and CO2 have been detected on these surface. The formation mechanisms of these molecules are still under discussion.
Aims. We present new experimental results on the implantation of 13Cq+ (q = 2, 3) ions at an energy of 30 keV in water ice at low temperatures (15 and 80 K). Experiments with multiply-charged ions at energies of tens of keV are particularly relevant to simulating the complexity of the irradiation environment to which the surfaces of the icy moons in the outer solar system are exposed.
Methods. The experiments were performed at the low-energy ion beam facility ARIBE of GANIL in Caen (France). 30 keV 13Cq+ (q = 2, 3) ions have been used to bombard solid H2O surface, which were frozen at 15 K and 80 K. Fourier transform infrared spectrometer (FTIR) was used to analyze the sample in the 5000–600 cm-1 (2–16.7 μm) region with a spectral resolution of 1 cm-1.
Results. The results of our experiments indicate that implantation produces 13CO2 with yields in the range of 0.32–0.57 molecules ion-1. This yield seems to be independent of the temperature of the ices in the range studied. We have estimated the time scale necessary to accumulate by implantation of magnetospheric carbon ions the observed quantity of carbon dioxide on the surface of Europa, a Jovian moon. This time scale is of the order of 1.0–1.3 × 104 yrs, which is higher than that evaluated for carbon dioxide production by other relevant processes.
Conclusions. We conclude that although a relevant quantity of CO2 can be formed by carbon ion implantation, this is not the dominant formation mechanism at Europa.
Key words: planets and satellites: surfaces / methods: laboratory / techniques: spectroscopic
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.