Issue |
A&A
Volume 544, August 2012
|
|
---|---|---|
Article Number | A133 | |
Number of page(s) | 5 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201219485 | |
Published online | 14 August 2012 |
Justification of the two-bulge method in the theory of bodily tides
US Naval Observatory, Washington, DC 20392, USA
e-mail: michael.efroimsky@usno.navy.mil
Received: 25 April 2012
Accepted: 10 July 2012
Aims. Mathematical modeling of bodily tides can be carried out in various ways. Most straightforward is the method of complex amplitudes, which is often used in the planetary science. Another method, employed both in planetary science and in astrophysics, is based on decomposition of each harmonic of the tide into two bulges oriented orthogonally to one another. We prove that the two methods are equivalent. Specifically, we demonstrate that the two-bulge method is not a separate approximation, but ensues directly from the Fourier expansion of a linear tidal theory equipped with an arbitrary rheological model involving a departure from elasticity.
Methods. To this end, we use the most general mathematical formalism applicable to linear bodily tides. To express the tidal amendment to the potential of the perturbed primary, we act on the tide-raising potential of the perturbing secondary with a convolution operator.
Results. This enables us to interconnect a complex Fourier component of the tidally generated potential of the perturbed primary with the appropriate complex Fourier component of the tide-raising potential of the secondary. Then we demonstrate how this interrelation entails the two-bulge description.
Conclusions. While less economical mathematically, the two-bulge approach has a good illustrative power, and may be employed on a par with a more concise method of complex amplitudes. At the same time, there exist situations where the two-bulge method becomes more practical for technical calculations.
Key words: binaries: close / planetary systems / stars: rotation / celestial mechanics / planets and satellites: general / planets and satellites: dynamical evolution and stability
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.