Issue |
A&A
Volume 544, August 2012
|
|
---|---|---|
Article Number | A79 | |
Number of page(s) | 11 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201219262 | |
Published online | 01 August 2012 |
Can grain growth explain transition disks?
1
University Observatory Munich, Scheinerstr. 1, 81679
München, Germany
e-mail: til.birnstiel@lmu.de
2
Excellence Cluster Universe, Technische Universität
München, Boltzmannstr.
2, 85748
Garching,
Germany
3
Harvard-Smithsonian Center for Astrophysics,
60 Garden Street, Cambridge, MA
02138,
USA
Received:
21
March
2012
Accepted:
21
June
2012
Aims. Grain growth has been suggested as one possible explanation for the diminished dust optical depths in the inner regions of protoplanetary “transition” disks. In this work, we directly test this hypothesis in the context of current models of grain growth and transport.
Methods. A set of dust evolution models with different disk shapes, masses, turbulence parameters, and drift efficiencies is combined with radiative transfer calculations in order to derive theoretical spectral energy distributions (SEDs) and images.
Results. We find that grain growth and transport effects can indeed produce dips in the infrared SED, as typically found in observations of transition disks. Our models achieve the necessary reduction of mass in small dust by producing larger grains, yet not large enough to be fragmenting efficiently. However, this population of large grains is still detectable at millimeter wavelengths. Even if perfect sticking is assumed and radial drift is neglected, a large population of dust grains is left behind because the time scales on which they are swept up by the larger grains are too long. This mechanism thus fails to reproduce the large emission cavities observed in recent millimeter-wave interferometric images of accreting transition disks.
Key words: accretion, accretion disks / protoplanetary disks / stars: pre-main sequence / planets and satellites: formation / circumstellar matter
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.