Issue |
A&A
Volume 544, August 2012
|
|
---|---|---|
Article Number | A105 | |
Number of page(s) | 14 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201118256 | |
Published online | 07 August 2012 |
Unveiling the nucleus of NGC 7172⋆
1 I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
e-mail: smajic@ph1.uni-koeln.de
2 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
Received: 12 October 2011
Accepted: 2 March 2012
Aims. We present the results of near-infrared (NIR) H + K European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 7172. We investigate the central 800 pc, concentrating on excitation conditions, morphology, and stellar content. NGC 7172 was selected from a sample of the ten nearest Seyfert 2 galaxies from the Veron-Cetty & Veron catalogue. All objects were chosen as test cases for adaptive optics (AO) assisted observations that allow a detailed study (at high spatial and spectral resolution) of the nuclear and host environments. NGC 7172 has a prominent dustlane crossing the central galaxy region from east to west, which makes it an ideal candidate to investigate the effect of obscuration by strong galactic extinction on (active) galaxies and their classification.
Methods. The NIR is less influenced by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy and provides us with the opportunity to analyze several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 4″ × 4″ field of view (FOV).
Results. We present emission and absorption line measurements in the central 800 pc of NGC 7172. The detection of [Si vi] and broad Paα and Brγ components are clear signs of an accreting super-massive black hole hiding behind the prominent dustlane at visible wavelengths. Hot temperatures of about 1300 K are indicative of a dusty torus in the nuclear region. Narrow components of Paα and Brγ enable us to make an extinction measurement. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation of these lines is caused by an active galactic nucleus. The central region of the galactic disk is predominantly inhabited by gas, dust, and an old K-M type giant stellar population. The gaseous, molecular, and stellar velocity maps show a related disturbed disk structure and similar velocities.
Conclusions. We find evidence of nuclear activity located behind the prominent dustlane crossing the central region of the galaxy. The nucleus of NGC 7172, which is optically classified as a Seyfert 2 nucleus without any trace of broad emission lines, is a Seyfert 1 nucleus either surrounded by a molecular dust torus or hidden behind the strong galactic extinction. Our observation provides support for the unified model scheme. However, an evolutionary scenario cannot be ruled out by our observation.
Key words: Galaxy: nucleus / Galaxy: stellar content / galaxies: Seyfert / infrared: galaxies
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.