Issue |
A&A
Volume 542, June 2012
|
|
---|---|---|
Article Number | A2 | |
Number of page(s) | 10 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201218844 | |
Published online | 24 May 2012 |
Profiles of the daytime atmospheric turbulence above Big Bear solar observatory
1 Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314-9672, USA
e-mail: kellerer@bbso.njit.edu
2 National Solar Observatory PO Box 62, Sunspot, NM 88340, USA
3 Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07012, USA
Received: 18 January 2012
Accepted: 18 April 2012
Context. Space weather has become acutely critical for today’s global communication networks. To understand its driving forces we need to observe the Sun with high angular-resolution, and within large fields-of-view, i.e. with multi-conjugate adaptive optics correction.
Aims. The design of a multi-conjugate adaptive optical system requires the knowledge of the altitude distribution of atmospheric turbulence. We have therefore measured daytime turbulence profiles above the New Solar Telescope (NST), on Big Bear Lake.
Methods. To this purpose, a wide-field wavefront sensor was installed behind the NST. The variation of the wavefront distortions with angular direction allows the reconstruction of the distribution of turbulence.
Results. The turbulence is found to have three origins: 1. a ground layer (<500 m) that contains 55–65% of the turbulence, 2. a boundary layer between 1–7 km comprises 30–40% of the turbulent energy, 3. and the remaining ~5% are generated in the tropopause, which is above 12 km in summer and between 8 and 12 km in winter.
Conclusions. A multi-conjugate adaptive optical system should thus aim at correcting the ground turbulence, the center of the boundary layer at roughly 3 km altitude and, eventually, the upper boundary layer around 6 km altitude.
Key words: instrumentation: adaptive optics / atmospheric effects / Sun: general
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.