Issue |
A&A
Volume 541, May 2012
|
|
---|---|---|
Article Number | A153 | |
Number of page(s) | 11 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201118639 | |
Published online | 22 May 2012 |
Time-dependent escape of cosmic rays from supernova remnants, and their interaction with dense media
1
DESY
Platanenallee 6,
15738
Zeuthen,
Germany
e-mail: igor.telezhinsky@desy.de
2
Universität Potsdam, Institut für Physik &
Astronomie, Karl-Liebknecht-Strasse
24/25, 14476
Potsdam,
Germany
3
University of Chicago, Department of Astronomy &
Astrophysics, 5640 S Ellis Ave, AAC
010c, Chicago,
IL
60637,
USA
Received: 14 December 2011
Accepted: 22 March 2012
Context. Supernova remnants (SNRs) are thought to be the main source of Galactic cosmic rays (CRs) up to the “knee” in CR spectrum. During the evolution of a SNR, the bulk of the CRs are confined inside the SNR shell. The highest-energy particles leave the system continuously, while the remaining adiabatically cooled particles are released when the SNR has expanded sufficiently and decelerated so that the magnetic field at the shock is no longer able to confine them. Particles escaping from the parent system may interact with nearby molecular clouds, producing γ-rays in the process via pion decay. The soft gamma-ray spectra observed for a number of SNRs interacting with molecular clouds, however, challenge current theories of non-linear particle acceleration that predict harder spectra.
Aims. We study how the spectrum of escaped particles depends on the time-dependent acceleration history in both Type Ia and corecollapse SNRs, as well as on different assumptions about the diffusion coefficient in the vicinity of the SNR.
Methods. We solve the CR transport equation in a test-particle approach combined with numerical simulations of SNR evolution.
Results. We extend our method for calculating the CR acceleration in SNRs to trace the escaped particles in a large volume around SNRs. We calculate the evolution of the spectra of CRs that have escaped from a SNR into a molecular cloud or dense shell for two diffusion models. We find a strong confinement of CRs in a close region around the SNR, and a strong dilution effect for CRs that were able to propagate out as far as a few SNR radii.
Key words: ISM: supernova remnants / ISM: clouds / cosmic rays
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.