Issue |
A&A
Volume 541, May 2012
|
|
---|---|---|
Article Number | A128 | |
Number of page(s) | 9 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201015755 | |
Published online | 11 May 2012 |
Accretion and structure of radiating disks
M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
e-mail: mach@th.if.uj.edu.pl
Received: 14 September 2010
Accepted: 19 March 2012
We studied a steadily accreting, geometrically thick disk model that selfconsistently takes into account selfgravitation of the polytropic gas, its interaction with the radiation and the mass accretion rate. The accreting mass is injected inward in the vicinity of the central z = 0 plane, where also radiation is assumed to be created. The rest of the disk remains approximately stationary. Only conservation laws are employed and the gas-radiation interaction in the bulk of the disk is described in the thin-gas approximation. We demonstrate that this scheme is numerically viable and yields a structure of the bulk that is influenced by the radiation and (indirectly) by the prescribed mass accretion rate. The obtained disk configurations are typical for environments in active galactic nuclei (AGNs), with the central mass of the order of 107 M⊙ to 108 M⊙, quasi-Keplerian rotation curves, disk masses ranging from about 106 M⊙ to 107 M⊙, and the luminosity ranging from 106 L⊙ to 109 L⊙. These luminosities are much lower than the corresponding Eddington limit.
Key words: accretion, accretion disks / hydrodynamics / gravitation / radiative transfer
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.