Issue |
A&A
Volume 539, March 2012
|
|
---|---|---|
Article Number | A88 | |
Number of page(s) | 16 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201117927 | |
Published online | 28 February 2012 |
Constraining Galactic cosmic-ray parameters with Z ≤ 2 nuclei
1 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 avenue des Martyrs, 38026 Grenoble, France
e-mail: coste@lpsc.in2p3.fr
2 The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, 10691 Stockholm, Sweden
Received: 22 August 2011
Accepted: 18 December 2011
Context. The secondary-to-primary B/C ratio is widely used for studying Galactic cosmic-ray propagation processes. The 2H/4He and 3He/4He ratios probe a different Z/A regime, which provides a test for the “universality” of propagation.
Aims. We revisit the constraints on diffusion-model parameters set by the quartet (1H, 2H, 3He, 4He), using the most recent data as well as updated formulae for the inelastic and production cross-sections.
Methods. Our analysis relies on the USINE propagation package and a Markov Chain Monte Carlo technique to estimate the probability density functions of the parameters. Simulated data were also used to validate analysis strategies.
Results. The fragmentation of CNO cosmic rays (resp. NeMgSiFe) on the interstellar medium during their propagation contributes to 20% (resp. 20%) of the 2H and 15% (resp. 10%) of the 3He flux at high energy. The C to Fe elements are also responsible for up to 10% of the 4He flux measured at 1 GeV/n. The analysis of 3He/4He (and to a lesser extent 2H/4He) data shows that the transport parameters are consistent with those from the B/C analysis: the diffusion model with δ ~ 0.7 (diffusion slope), Vc ~ 20 km s-1 (galactic wind), Va ~ 40 km s-1 (reacceleration) is favoured, but the combination δ ~ 0.2, Vc ~ 0, and Va ~ 80 km s-1 is a close second. The confidence intervals on the parameters show that the constraints set by the quartet data can compete with those derived from the B/C data. These constraints are tighter when adding the 3He (or 2H) flux measurements, and the tightest when the He flux is added as well. For the latter, the analysis of simulated and real data shows an increased sensitivity to biases. Using the secondary-to-primary ratio along with a loose prior on the source parameters is recommended to obtain the most robust constraints on the transport parameters.
Conclusions. Light nuclei should be systematically considered in the analysis of transport parameters. They provide independent constraints that can compete with those obtained from the B/C analysis.
Key words: methods: statistical / astroparticle physics / cosmic rays
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.