Issue |
A&A
Volume 539, March 2012
|
|
---|---|---|
Article Number | A75 | |
Number of page(s) | 12 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201117363 | |
Published online | 24 February 2012 |
The inner heliosheath source for keV-ENAs observed with IBEX
Shock-processed downstream pick-up ions
1 Argelander Institut für Astronomie der Universität Bonn, Abteilung f. Astrophysik und Extraterrestrische Forschung, Auf dem Huegel 71, 53121 Bonn, Germany
e-mail: msiewert@astro.uni-bonn.de
2 Southwest Research Institute, San Antonio, TX; and University of Texas, San Antonio, San Antonio, TX, USA
3 Department of Astronomy, University of New Hampshire, Durham, NH, USA
Received: 28 May 2011
Accepted: 16 December 2011
Context. The “IBEX ribbon” feature provides significant challenges to theoretical modeling attempts of the outer heliosphere. Classical ENA production by shock-processed nonthermal tails results in no relevant ENA signatures, mainly due to the downstream solar wind proton temperature observed by the Voyagers being one order of magnitude smaller than expected from the classical monofluid shock model.
Aims. Here, we therefore study shock-processed pick-up ions (PUIs) in the inner heliosheath resulting from a multifluid shock model as a source of keV-energetic ENAs as have been detected by the IBEX mission. Unlike previous studies, we apply a semikinetic multifluid shock model, which did prove useful in explaining the apparent temperature discrepancy in the past.
Methods. To convert upstream into downstream pick-up ions, we use both kinetic and multifluid theories describing the solar wind termination shock (TS) transition. This allows us to obtain the downstream PUI distribution function as a function of classical shock properties, such as the local magnetic field tilt angle and the compression ratio. In addition, this kinetic model also allows to derive a formulation of latitude- and longitude-dependent spectral intensities between 1 and 100 keV, a region which is not covered by missions such as the Voyagers and needs to be covered by theoretical considerations.
Results. After converting shock-processed PUIs to ENAs by charge exchange with cold H-atoms, we find keV ENA fluxes of the same order of magnitude as those observed by IBEX. These fluxes also exhibit a pronounced ring-type feature, with about the correct ratio of ring-to-nose intensities, producing encouraging overall agreement with IBEX data, potential of further improvement.
Key words: magnetohydrodynamics (MHD) / shock waves / plasmas / solar wind
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.