Issue |
A&A
Volume 538, February 2012
|
|
---|---|---|
Article Number | A117 | |
Number of page(s) | 5 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/201118261 | |
Published online | 10 February 2012 |
Fluorine abundances in dwarf stars of the solar neighbourhood⋆
1 Laboratoire Lagrange, UMR 7293, Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice, France
e-mail: arecio@oca.eu
2 Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
3 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal
4 European Organization for Astronomical Research in the Southern Hemisphere ; Alonso de Córdova 3107, Casilla 19001 – Santiago 19, Chile
5 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
Received: 13 October 2011
Accepted: 22 November 2011
Context. In spite of many observational efforts to characterize the chemical evolution of our Galaxy, not much is known about the origin of fluorine (F). Models suggest that the F found in the Galaxy might have been produced mainly in three different ways, namely, Type II supernovae, asymptotic giant branch nucleosynthesis, or in the core of Wolf-Rayet stars. Only a few observational measurements of F abundances are available in the literature and mostly for objects whose characteristics might hamper an accurate determination of fluorine abundance (e.g., complex mixing and nucleosynthesis processes, external/internal contamination).
Aims. We acquire data using the high-resolution IR-spectrograph CRIRES and gather FEROS data from the European Southern Observatory archive. The classical method of spectral synthesis in local thermodynamic equilibrium has been used to perform the abundance analysis.
Methods. We derive the F abundances of nine cool main-sequence dwarfs in the solar neighbourhood, based on an unblended line of the HF molecule at 2.3 microns. In addition, we study the s-process elements of five of these stars.
Results. Several of the analysed stars seem to be slightly fluorine enhanced with respect to the Sun, although no correlation is found between the F abundance and the iron content. In addition, the most fluorine enriched stars are also yttrium and zirconium enriched, which suggests that AGB fluorine nucleosynthesis is the dominant source of fluorine production for the observed stars. Nevertheless, the correlation between [F/Fe] and the s-elements is rather weak and possibly masked by the uncertainties in the F abundance measurements. Finally, we compare our derived F abundances to previous measurements of alpha-element and iron-peak element abundances. Type II core collapse supernovae do not appear to be the main site of F production for our targets, as no correlation seems to exist between the [F/Fe] and the [α/Fe] ratios.
Key words: stars: abundances / stars: solar type / solar neighbourhood
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.