Issue |
A&A
Volume 538, February 2012
|
|
---|---|---|
Article Number | A67 | |
Number of page(s) | 11 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/201118008 | |
Published online | 03 February 2012 |
Numerical solution of the radiative transfer equation: X-ray spectral formation from cylindrical accretion onto a magnetized neutron star
1
INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, via U. La Malfa
153,
90146
Palermo,
Italy
e-mail: farinelli@ifc.inaf.it
2
Dipartimento di Fisica, Università di Ferrara,
via Saragat 1, 44100
Ferrara,
Italy
3
NASA, Goddard Space Flight Center, Greenbelt, MD
20771,
USA
Received:
2
September
2011
Accepted:
6
November
2011
Context. Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative equation according to the expected physical conditions of the systems under study.
Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium.
Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system τ using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star.
Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth τ produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles.
Conclusions. The algorithm has been implemented in the xspec package for X-ray spectral fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (≳ 1012 G). This latter case is expected to be typical of accreting systems such as X-ray pulsars and supergiant fast X-ray transients.
Key words: methods: numerical / X-rays: binaries / radiative transfer / magnetic fields
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.