Issue |
A&A
Volume 537, January 2012
|
|
---|---|---|
Article Number | A85 | |
Number of page(s) | 8 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201117851 | |
Published online | 12 January 2012 |
Magnetic and velocity fields of a solar pore
1 Astronomical Institute, Academy of Sciences of the Czech Republic (v.v.i.), Fričova 298, 25165 Ondřejov, Czech Republic
e-mail: msobotka@asu.cas.cz
2 Department of Physics, University of Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma, Italy
Received: 8 August 2011
Accepted: 18 November 2011
Context. Solar pores are intermediate-size magnetic flux features that emerge at the surface of the Sun. The absence of a filamentary penumbra indicates that there is a relatively simple magnetic structure with a prevailing vertical magnetic field.
Aims. Relations between the magnetic field components, line-of-sight velocities, and horizontal motions in and around a large pore (Deff = 8''.5) are analysed to provide observational constraints on theoretical models and numerical simulations.
Methods. Spectropolarimetric observations in Fe I 617.3 nm of the pore NOAA 11005 with the IBIS spectrometer attached to the Dunn Solar Telescope are inverted into series of maps of thermal, magnetic, and velocity parameters using the SIR code. Horizontal velocities are obtained from series of white-light images by means of local correlation tracking.
Results. The magnetic field B extends from the visible pore border of more than 3''.5 and has a radial structure in a form of spines that are co-spatial with dark intergranular lanes. The horizontal component Bhor is more extended than the vertical component Bz. The temperature linearly decreases with increasing Bz, by about − 300 K kG-1 in the photosphere and − 800 K kG-1 in the umbra. The temperature contrast of granulation increases with increasing magnetic field strength and is then suppressed for Bz > 1200 G. Granular upflows dominate in regions with Bz < 600–700 G. Line-of-sight velocities are lower in stronger fields, except for fast isolated downflows at the pore’s border. The velocity signature of granulation is suppressed completely for Bhor > 1000 G. Horizontal motions of granules start to be damped for Bz > 500 G and recurrently exploding granules appear only in magnetic fields comparable to or weaker than the equipartition field strength 400 G.
Key words: sunspots / Sun: photosphere
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.