Issue |
A&A
Volume 536, December 2011
Planck early results
|
|
---|---|---|
Article Number | A17 | |
Number of page(s) | 17 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201116473 | |
Published online | 01 December 2011 |
Planck early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds⋆
1
Aalto University Metsähovi Radio Observatory, Metsähovintie 114, 02540 Kylmälä, Finland
2
Agenzia Spaziale Italiana Science Data Center, c/o ESRIN, via Galileo Galilei, Frascati, Italy
3
Astroparticule et Cosmologie, CNRS (UMR7164), Université Denis Diderot Paris 7, Bâtiment Condorcet, 10 rue A. Domon et Léonie Duquet, Paris, France
4
Astrophysics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
5
Atacama Large Millimeter/submillimeter Array, ALMA Santiago Central Offices, Alonso de Cordova 3107, Vitacura, Casilla 763 0355, Santiago, Chile
6
CITA, University of Toronto, 60 St. George St., Toronto, ON M5S 3H8, Canada
7
CNRS, IRAP, 9 Av. colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
e-mail: Jean-Philippe.Bernard@cesr.fr
8
California Institute of Technology, Pasadena, California, USA
9
DAMTP, University of Cambridge, Centre for Mathematical Science, Wilberforce Road, Cambridge CB3 0WA, UK
10
DSM/Irfu/SPP, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
11
DTU Space, National Space Institute, Juliane Mariesvej 30, Copenhagen, Denmark
12
Departamento de Física, Universidad de Oviedo, Avda. Calvo Sotelo s/n, Oviedo, Spain
13
Department of Astronomy and Astrophysics, University of Toronto, 50 Saint George Street, Toronto, Ontario, Canada
14
Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
15
Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
16
Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada
17
Department of Physics, Gustaf Hällströmin katu 2a, University of Helsinki, Helsinki, Finland
18
Department of Physics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
19
Department of Physics, Princeton University, Princeton, New Jersey, USA
20
Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana, USA
21
Department of Physics, University of California, Berkeley, California, USA
22
Department of Physics, University of California, One Shields Avenue, Davis, California, USA
23
Department of Physics, University of California, Santa Barbara, California, USA
24
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois, USA
25
Dipartimento di Fisica G. Galilei, Università degli Studi di Padova, via Marzolo 8, 35131 Padova, Italy
26
Dipartimento di Fisica, Università La Sapienza, P. le A. Moro 2, Roma, Italy
27
Dipartimento di Fisica, Università degli Studi di Milano, via Celoria, 16, Milano, Italy
28
Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valerio 2, Trieste, Italy
29
Dipartimento di Fisica, Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
30
Dipartimento di Fisica, Università di Roma Tor Vergata, via della Ricerca Scientifica, 1, Roma, Italy
31
Discovery Center, Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark
32
Dpto. Astrofísica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
33
European Southern Observatory, ESO Vitacura, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago, Chile
34
European Space Agency, ESAC, Planck Science Office, Camino bajo del Castillo, s/n, Urbanización Villafranca del Castillo, Villanueva de la Cañada, Madrid, Spain
35
European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
36
Helsinki Institute of Physics, Gustaf Hällströmin katu 2, University of Helsinki, Helsinki, Finland
37
INAF – Osservatorio Astrofisico di Catania, via S. Sofia 78, Catania, Italy
38
INAF – Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, Padova, Italy
39
INAF – Osservatorio Astronomico di Roma, via di Frascati 33, Monte Porzio Catone, Italy
40
INAF – Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, Trieste, Italy
41
INAF/IASF Bologna, via Gobetti 101, Bologna, Italy
42
INAF/IASF Milano, via E. Bassini 15, Milano, Italy
43
INRIA, Laboratoire de Recherche en Informatique, Université Paris-Sud 11, Bâtiment 490, 91405 Orsay Cedex, France
44
IPAG: Institut de Planétologie et d’Astrophysique de Grenoble, Université Joseph Fourier, Grenoble 1/CNRS-INSU, UMR 5274, 38041 Grenoble, France
45
Imperial College London, Astrophysics group, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, UK
46
Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA
47
Institut Néel, CNRS, Université Joseph Fourier Grenoble I, 25 rue des Martyrs, Grenoble, France
48
Institut d’Astrophysique Spatiale, CNRS (UMR8617) Université Paris-Sud 11, Bâtiment 121, Orsay, France
49
Institut d’Astrophysique de Paris, CNRS UMR7095, Université Pierre & Marie Curie, 98bis boulevard Arago, Paris, France
50
Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan
51
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
52 Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
53
Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, La Laguna, Tenerife, Spain
54
Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, Santander, Spain
55
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, USA
56
Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
57
Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
58
LERMA, CNRS, Observatoire de Paris, 61 avenue de l’Observatoire, Paris, France
59
Laboratoire AIM, IRFU/Service d’Astrophysique – CEA/DSM – CNRS – Université Paris Diderot, Bât. 709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
60
Laboratoire Traitement et Communication de l’Information, CNRS (UMR 5141) and Télécom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13, France
61
Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3, Université Joseph Fourier Grenoble I, Institut National Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble Cedex, France
62
Laboratoire de l’Accélérateur Linéaire, Université Paris-Sud 11, CNRS/IN2P3, Orsay, France
63
Lawrence Berkeley National Laboratory, Berkeley, California, USA
64
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
65
MilliLab, VTT Technical Research Centre of Finland, Tietotie 3, Espoo, Finland
66
National University of Ireland, Department of Experimental Physics, Maynooth, Co. Kildare, Ireland
67
Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark
68
Observational Cosmology, Mail Stop 367-17, California Institute of Technology, Pasadena, CA, 91125, USA
69
Observatoire Astronomique de Strasbourg, CNRS, UMR 7550, 67000 Strasbourg, France
70
Optical Science Laboratory, University College London, Gower Street, London, UK
71
SISSA, Astrophysics Sector, via Bonomea 265, 34136, Trieste, Italy
72
SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
73
School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA, UK
74
Space Sciences Laboratory, University of California, Berkeley, California, USA
75
Spitzer Science Center, 1200 E. California Blvd., Pasadena, California, USA
76
Stanford University, Dept of Physics, Varian Physics Bldg, 382 via Pueblo Mall, Stanford, California, USA
77
Université de Toulouse, UPS-OMP, IRAP, 31028 Toulouse Cedex 4, France
78
Universities Space Research Association, Stratospheric Observatory for Infrared Astronomy, MS 211-3, Moffett Field, CA 94035, USA
79
University of Granada, Departamento de Física Teórica y del Cosmos, Facultad de Ciencias, Granada, Spain
80
University of Miami, Knight Physics Building, 1320 Campo Sano Dr., Coral Gables, Florida, USA
81
Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland
Received: 8 January 2011
Accepted: 31 May 2011
The integrated spectral energy distributions (SED) of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) appear significantly flatter than expected from dust models based on their far-infrared and radio emission. The still unexplained origin of this millimetre excess is investigated here using the Planck data. The integrated SED of the two galaxies before subtraction of the foreground (Milky Way) and background (CMB fluctuations) emission are in good agreement with previous determinations, confirming the presence of the millimetre excess. In the context of this preliminary analysis we do not propose a full multi-component fitting of the data, but instead subtract contributions unrelated to the galaxies and to dust emission. The background CMB contribution is subtracted using an internal linear combination (ILC) method performed locally around the galaxies. The foreground emission from the Milky Way is subtracted as a Galactic Hi template, and the dust emissivity is derived in a region surrounding the two galaxies and dominated by Milky Way emission. After subtraction, the remaining emission of both galaxies correlates closely with the atomic and molecular gas emission of the LMC and SMC. The millimetre excess in the LMC can be explained by CMB fluctuations, but a significant excess is still present in the SMC SED. The Planck and IRAS–IRIS data at 100 μm are combined to produce thermal dust temperature and optical depth maps of the two galaxies. The LMC temperature map shows the presence of a warm inner arm already found with the Spitzer data, but which also shows the existence of a previously unidentified cold outer arm. Several cold regions are found along this arm, some of which are associated with known molecular clouds. The dust optical depth maps are used to constrain the thermal dust emissivity power-law index (β). The average spectral index is found to be consistent with β = 1.5 and β = 1.2 below 500μm for the LMC and SMC respectively, significantly flatter than the values observed in the Milky Way. Also, there is evidence in the SMC of a further flattening of the SED in the sub-mm, unlike for the LMC where the SED remains consistent with β = 1.5. The spatial distribution of the millimetre dustexcess in the SMC follows the gas and thermal dust distribution. Different models are explored in order to fit the dust emission in the SMC. It is concluded that the millimetre excess is unlikely to be caused by very cold dust emission and that it could be due to a combination of spinning dust emission and thermal dust emission by more amorphous dust grains than those present in our Galaxy.
Key words: Magellanic Clouds / dust, extinction / ISM: structure / galaxies: ISM / infrared: galaxies / submillimeter: galaxies
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.