Issue |
A&A
Volume 535, November 2011
|
|
---|---|---|
Article Number | L2 | |
Number of page(s) | 4 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201116776 | |
Published online | 28 October 2011 |
Letter to the Editor
The shear-Hall instability in newborn neutron stars
1
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
e-mail: gruediger@aip.de; tkondic@aip.de
2
University of Leeds, Department of Applied Mathematics, Leeds LS2 9JT, UK
e-mail: rh@maths.leeds.ac.uk
Received: 24 February 2011
Accepted: 3 October 2011
Aims. In the first few minutes of a newborn neutron star’s life the Hall effect and differential rotation may both be important. We demonstrate that these two ingredients are sufficient for generating a “shear-Hall instability” and for studying its excitation conditions, growth rates, and characteristic magnetic field patterns.
Methods. We numerically solve the induction equation in a spherical shell, with a kinematically prescribed differential rotation profile Ω(s), where s is the cylindrical radius. The Hall term is linearized about an imposed uniform axial field. The linear stability of individual azimuthal modes, both axisymmetric and non-axisymmetric, is then investigated.
Results. For the shear-Hall instability to occur, the axial field must be parallel to the rotation axis if Ω(s) decreases outward, whereas if Ω(s) increases outward it must be anti-parallel. The instability draws its energy from the differential rotation, and occurs on the short rotational timescale rather than on the much longer Hall timescale. It operates most efficiently if the Hall time is comparable to the diffusion time. Depending on the precise field strengths B0, either axisymmetric or non-axisymmetric modes may be the most unstable.
Conclusions. Even if the differential rotation in newborn neutron stars is quenched within minutes, the shear-Hall instability may nevertheless amplify any seed magnetic fields by many orders of magnitude.
Key words: instabilities / magnetohydrodynamics (MHD) / magnetic fields / stars: neutron
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.