Issue |
A&A
Volume 533, September 2011
|
|
---|---|---|
Article Number | A19 | |
Number of page(s) | 12 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201117004 | |
Published online | 18 August 2011 |
Studying the spatially resolved Schmidt-Kennicutt law in interacting galaxies: the case of Arp 158
1
University of MassachusettsDepartment of Astronomy,,
LGRT-B 619E,
Amherst,
MA
01003,
USA
2
Laboratoire d’Astrophysique de Marseille, UMR 6110
CNRS, 38 rue F.
Joliot-Curie, 13388
Marseille,
France
e-mail: mederic.boquien@oamp.fr
3 Departamento de Física Teórica y del Cosmos, Universidad de
Granada, Spain
4
Laboratoire AIM, CEA/DSM – CNRS – Université Paris Diderot,
DAPNIA/Service d’Astrophysique, CEA/Saclay, 91191
Gif-sur-Yvette Cedex,
France
5
Laboratoire d’Astrophysique de Bordeaux, Université Bordeaux 1,
Observatoire de Bordeaux, OASU, UMR 5804, CNRS/INSU, BP 89, 33270
Floirac,
France
6
Centre for Astrophysics Research, University of
Hertfordshire, Hatfield
AL10 9AB,
UK
7
Department of Physics and Institute of Theoretical &
Computational Physics, University of Crete, 71003
Heraklion,
Greece
8
IESL/Foundation for Research and Technology –
Hellas, 71110
Heraklion,
Greece
9
Chercheur Associé, Observatoire de Paris,
75014
Paris,
France
Received: 1 April 2011
Accepted: 30 June 2011
Context. Recent studies have shown that star formation in mergers does not seem to follow the same Schmidt-Kennicutt relation as in spiral disks, presenting a higher star formation rate (SFR) for a given gas column density.
Aims. In this paper we study why and how different models of star formation arise. To do so we examine the process of star formation in the interacting system Arp 158 and its tidal debris.
Methods. We perform an analysis of the properties of specific regions of interest in Arp 158 using observations tracing the atomic and the molecular gas, star formation, the stellar populations as well as optical spectroscopy to determine their exact nature and their metallicity. We also fit their spectral energy distribution with an evolutionary synthesis code. Finally, we compare star formation in these objects to star formation in the disks of spiral galaxies and mergers.
Results. Abundant molecular gas is found throughout the system and the tidal tails appear to have many young stars compared to their old stellar content. One of the nuclei is dominated by a starburst whereas the other is an active nucleus. We estimate the SFR throughout the systems using various tracers and find that most regions follow closely the Schmidt-Kennicutt relation seen in spiral galaxies with the exception of the nuclear starburst and the tip of one of the tails. We examine whether this diversity is due to uncertainties in the manner the SFR is determined or whether the conditions in the nuclear starburst region are such that it does not follow the same Schmidt-Kennicutt law as other regions.
Conclusions. Observations of the interacting system Arp 158 provide the first evidence in a resolved fashion that different star-forming regions in a merger may be following different Schmidt-Kennicutt laws. This suggests that the physics of the interstellar medium at a scale no larger than 1 kpc, the size of the largest gravitational instabilities and the injection scale of turbulence, determines the origin of these laws.
Key words: galaxies: star formation / galaxies: interactions
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.