Issue |
A&A
Volume 533, September 2011
|
|
---|---|---|
Article Number | A24 | |
Number of page(s) | 11 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201116525 | |
Published online | 22 August 2011 |
Observational tests of interstellar methanol formation
1
Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA
e-mail: eva.s.wirstrom@nasa.gov
2
Onsala Space Observatory, Department of Earth and Space Sciences, Chalmers University of Technology, 439 92 Onsala, Sweden
3
Physics Department, Stockholm University, 10691 Stockholm, Sweden
4
Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
Received: 16 January 2011
Accepted: 14 July 2011
Context. It has been established that the classical gas-phase production of interstellar methanol (CH3OH) cannot explain observed abundances. Instead it is now generally thought that the main formation path has to be by successive hydrogenation of solid CO on interstellar grain surfaces.
Aims. While theoretical models and laboratory experiments show that methanol is efficiently formed from CO on cold grains, our aim is to test this scenario by astronomical observations of gas associated with young stellar objects (YSOs).
Methods. We have observed the rotational transition quartets J = 2K – 1K of 12CH3OH and 13CH3OH at 96.7 and 94.4 GHz, respectively, towards a sample of massive YSOs in different stages of evolution. In addition, the J = 1−0 transitions of 12C18O and 13C18O were observed towards some of these sources. We use the 12C/13C ratio to discriminate between gas-phase and grain surface origin: If methanol is formed from CO on grains, the ratios should be similar in CH3OH and CO. If not, the ratio should be higher in CH3OH due to 13C fractionation in cold CO gas. We also estimate the abundance ratios between the nuclear spin types of methanol (E and A). If methanol is formed on grains, this ratio is likely to have been thermalized at the low physical temperature of the grain, and therefore show a relative over-abundance of A-methanol.
Results. We show that the 12C/13C isotopic ratio is very similar in gas-phase CH3OH and C18O, on the spatial scale of about 40″, towards four YSOs. For two of our sources we find an overabundance of A-methanol as compared to E-methanol, corresponding to nuclear spin temperatures of 10 and 16 K. For the remaining five sources, the methanol E/A ratio is less than unity.
Conclusions. While the 12C/13C ratio test is consistent with methanol formation from hydrogenation of CO on grain surfaces, the result of the E/A ratio test is inconclusive.
Key words: ISM: molecules / astrochemistry / radio lines: ISM
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.