Issue |
A&A
Volume 532, August 2011
|
|
---|---|---|
Article Number | A62 | |
Number of page(s) | 15 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201117080 | |
Published online | 22 July 2011 |
Reconstructing the intergalactic UV background with QSO absorption lines
Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
e-mail: cfech@astro.physik.uni-potsdam.de
Received: 14 April 2011
Accepted: 6 June 2011
We present a new approach to observationally constraining the spectral energy distribution of the intergalactic UV background by studying metal absorption systems. We study single-component metal line systems that exhibit various well-measured species. Among the observed transitions, at least two ratios of ionization stages from the same element are required, e.g. C iii/C iv and Si iii/Si iv. For each system photoionization models are constructed by varying the spectrum of the ionizing radiation. The spectral energy distribution can then be constrained by comparing the models with the observed column density ratios. Extensive tests with artificial absorbers show that the spectrum of the ionizing radiation cannot be reconstructed unambiguously, but it is possible to constrain the main characteristics of the spectrum. Furthermore, the resulting physical parameters of the absorber, such as ionization parameter, metallicity, and relative abundances, may depend strongly on the adopted ionizing spectrum. Even in case of well-fitting models, the uncertainties can be as high as ~0.5 dex for the ionization parameter and up to ~1.5 dex for the metallicity. Therefore, it is essential to know the hardness of the UV background when estimating the metallicity of the intergalactic medium. Applying the procedure to a small sample of 3 observed single-component metal line systems yields a soft ionizing radiation at z > 2 and a slightly harder spectrum at z < 2. The resulting energy distributions exhibit strong He ii Lyα re-emission features, suggesting that reprocessing by intergalactic He ii is important. Comparing the observed systems to UV background spectra from the literature indicates that a recent model that includes sawtooth modulation due to reprocessing by intergalactic He ii with delayed helium reionization fits the investigated systems very well.
Key words: intergalactic medium / quasars: absorption lines / diffuse radiation
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.