Issue |
A&A
Volume 532, August 2011
|
|
---|---|---|
Article Number | A30 | |
Number of page(s) | 17 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201016242 | |
Published online | 18 July 2011 |
Nonaxisymmetric instabilities of neutron star with toroidal magnetic fields
1
Yukawa Institute for Theoretical Physics, Kyoto University,
Kyoto
606-8502,
Japan
e-mail: kiuchi@yukawa.kyoto-u.ac.jp
2
Astronomical Institute, Tohoku University,
Sendai
980-8578,
Japan
Received:
1
December
2010
Accepted:
23
April
2011
Context.
Aims. Super magnetized neutron stars of ~1015 G, magnetars, and magnetized protoneutron stars born after the magnetically-driven supernovae are likely to have very strong toroidal magnetic fields.
Methods. Long-term, three-dimensional general relativistic magnetohydrodynamic simulations were performed to prepare isentropic neutron stars with toroidal magnetic fields in equilibrium as initial conditions. To explore the effects of rotations on the stability, simulations were done for both nonrotating and rigidly rotating models.
Results. We find the emergence of the Parker and/or Tayler instabilities in both the nonrotating and rotating models. For both nonrotating and rotating models, the Parker instability is the primary instability predicted by the local linear perturbation analysis. The interchange instability also appears in the rotating models. It is found that the Parker instability cannot be suppressed even if the stars rotate rapidly. This finding does not agree with the perturbation analysis, because rigidly and rapidly rotating stars are marginally stable; therefore, in the presence of stellar pulsations that deform the rotational profile, unstable regions develop with a negative gradient of the angular momentum profile. After the onset of the instabilities, a turbulence is excited. In contrast to the axisymmetric case, the magnetic fields never reach a state of equilibrium after the the turbulence develops.
Conclusions. Isentropic neutron stars with strong toroidal magnetic fields are always likely to be unstable against the Parker instability. Turbulent motion is induced and maintained for a long time. This conclusion is different for axisymmetric simulations and suggests that three-dimensional simulation is indispensable for exploring the formation of magnetars or the prominent activities of magnetars such as giant flares.
Key words: stars: neutron / instabilities / magnetohydrodynamics / stars: magnetars
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.