Issue |
A&A
Volume 531, July 2011
|
|
---|---|---|
Article Number | A108 | |
Number of page(s) | 7 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201117099 | |
Published online | 22 June 2011 |
Flux emergence within mature solar active regions
Niels Bohr Institute,
Juliane Maries Vej 30,
2100
Copenhagen,
Denmark
e-mail: mactag@nbi.dk
Received: 18 April 2011
Accepted: 20 May 2011
Aims. Recent insterest in flux emergence within mature active regions has led to several observational studies. Our aim is to model such a scenario and investigate the evolution of the system.
Methods. We solve the 3D MHD equations numerically with a Lagrangian-remap scheme. The mature active region is modelled, in the initial condition, with a potential field. The smaller emerging region is a twisted flux tube and is placed between the two polarities of the mature region. The polarities of the new flux are aligned the same way as those of the mature region. The new flux emerges closer to the main negative polarity than the main positive polarity. To investigate the effects of reconnection, the distribution of the parallel electric field is calculated throughout the simulation. The topology of the magnetic field is then studied in regions of interest indicated by the electric field distribution.
Results. The expansion of the new negative polarity is restricted due to the curvature of the overlying field and also because it is of the same sign. Reconnection is found to be strongest at low heights (below the corona) and along the outer side of the new positive polarity and its magnetic tongue. The effect of reconnection, in combination with the pressure between the two flux systems, is to resist the expansion of the new flux. The system then relaxes. Large-scale eruptions, such as CMEs, are not expected from the setup considered. At the new negative polarity, the high magnetic pressure can generate strong parallel electric fields which may lead to localized reconnection. The results of the model are in qualitative agreement with observations.
Key words: magnetohydrodynamics (MHD) / magnetic fields / magnetic reconnection / Sun: atmosphere / methods: numerical
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.