Issue |
A&A
Volume 531, July 2011
|
|
---|---|---|
Article Number | A97 | |
Number of page(s) | 7 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201016047 | |
Published online | 21 June 2011 |
Investigation of mass flows in the transition region and corona in a three-dimensional numerical model approach
1
Kiepenheuer-Institut für Sonnenphysik,
Schöneckstrasse 6,
79104
Freiburg,
Germany
e-mail: pia@kis.uni-freiburg.de
2
Max Planck Institute for Solar System Research,
Max-Planck Strasse 2,
37191
Katlenburg-Lindau,
Germany
Received: 2 November 2010
Accepted: 4 April 2011
Context. The origin of solar transition region redshifts is not completely understood. Current research is addressing this issue by investigating three-dimensional magneto-hydrodynamic models that extend from the photosphere to the corona.
Aims. By studying the average properties of emission line profiles synthesized from the simulation runs and comparing them to observations with present-day instrumentation, we investigate the origin of mass flows in the solar transition region and corona.
Methods. Doppler shifts were determined from the emission line profiles of various extreme-ultraviolet emission lines formed in the range of T = 104−106 K. Plasma velocities and mass flows were investigated for their contribution to the observed Doppler shifts in the model. In particular, the temporal evolution of plasma flows along the magnetic field lines was analyzed.
Results. Comparing observed vs. modeled Doppler shifts shows a good correlation in the temperature range log (T/[K]) = 4.5−5.7, which is the basis of our search for the origin of the line shifts. The vertical velocity obtained when weighting the velocity by the density squared is shown to be almost identical to the corresponding Doppler shift. Therefore, a direct comparison between Doppler shifts and the model parameters is allowed. A simple interpretation of Doppler shifts in terms of mass flux leads to overestimating the mass flux. Upflows in the model appear in the form of cool pockets of gas that heat up slowly as they rise. Their low temperature means that these pockets are not observed as blueshifts in the transition region and coronal lines. For a set of magnetic field lines, two different flow phases could be identified. The coronal part of the field line is intermittently connected to subjacent layers of either strong or weak heating, leading either to mass flows into the loop (observed as a blueshift) or to the draining of the loop (observed as a redshift).
Key words: stars: coronae / Sun: corona / Sun: transition region / Sun: UV radiation / techniques: spectroscopic
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.