Issue |
A&A
Volume 527, March 2011
|
|
---|---|---|
Article Number | A78 | |
Number of page(s) | 26 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201015204 | |
Published online | 28 January 2011 |
A pan-chromatic view of the galaxy cluster XMMU J1230.3+1339 at z = 0.975
Observing the assembly of a massive system⋆
1
Max-Planck-Institut für extraterrestrische Physik (MPE),
Giessenbachstrasse 1,
85748
Garching,
Germany
e-mail: rfassben@mpe.mpg.de
2
INAF - Osservatorio Astronomico di Trieste,
via Tiepolo 11,
34131
Trieste,
Italy
3
CEASaclay, Service d’Astrophysique, L’Orme des Merisiers, Bât. 709,
91191
Gif-sur-Yvette Cedex,
France
4
Astrophysikalisches Institut Potsdam (AIP),
An der Sternwarte
16, 14482
Potsdam,
Germany
5
University Observatory Munich, Ludwigs-Maximillians University
Munich, Scheinerstr.
1, 81679
Munich,
Germany
6
European Southern Observatory (ESO), Karl-Scharzschild-Str. 2, 85748
Garching,
Germany
7
Departamento de Astronomía y Astrofísica, Pontificia Universidad
Católica de Chile, Casilla
306, Santiago 22,
Chile
8
Excellence Cluster Universe, Boltzmannstr. 2, 85748
Garching,
Germany
Received:
13
June
2010
Accepted:
29
August
2010
Context. Observations of the formation and evolution of massive galaxy clusters and their matter components provide crucial constraints on cosmic structure formation, the thermal history of the intracluster medium (ICM), galaxy evolution, transformation processes, and gravitational and hydrodynamic interaction physics of the subcomponents.
Aims. We characterize the global multi-wavelength properties of the X-ray selected galaxy cluster XMMU J1230.3+1339 at z = 0.975, a new system discovered within the XMM-Newton Distant Cluster Project (XDCP). We measure and compare various widely used mass proxies and identify multiple cluster-associated components from the inner core region out to the large-scale structure environment.
Methods. We present a comprehensive galaxy cluster study based on a joint analysis of X-ray data, optical imaging and spectroscopy observations, weak lensing results, and radio properties for achieving a detailed multi-component view on a system at z ~ 1.
Results. We find an optically very rich and massive system with M200 ≃ (4.2 ± 0.8) × 1014 M⊙, keV, and × 1044 erg s-1. We have identified a central fly-through group close to core passage and find marginally extended 1.4 GHz radio emission possibly associated with the turbulent wake region of the merging event. On the cluster outskirts we see evidence for an on-axis infalling group with a second brightest cluster galaxy (BCG) and indications for an additional off-axis group accretion event. We trace two galaxy filaments beyond the nominal cluster radius and provide a tentative reconstruction of the 3D-accretion geometry of the system.
Conclusions. In terms of total mass, ICM structure, optical richness, and the presence of two dominant BCG-type galaxies, the newly confirmed cluster XMMU J1230.3+1339 is likely the progenitor of a system very similar to the local Coma cluster, differing by 7.6 Gyr of structure evolution. This new system is an ideally suited astrophysical model laboratory for in-depth follow-up studies on the aggregation of baryons in the cold and hot phases.
Key words: galaxies: clusters: general / galaxies: clusters: individual: XMMU J1230.3+1339 / X-rays: galaxies: clusters / galaxies: elliptical and lenticular, cD / galaxies: evolution / dark matter
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.