Issue |
A&A
Volume 524, December 2010
|
|
---|---|---|
Article Number | A46 | |
Number of page(s) | 14 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201015464 | |
Published online | 23 November 2010 |
Jupiter’s stratospheric hydrocarbons and temperatures after the July 2009 impact from VLT infrared spectroscopy
1
Atmospheric, Oceanic & Planetary Physics, Department of
PhysicsUniversity of Oxford, Clarendon Laboratory,
Parks Road,
Oxford
OX1 3PU,
UK
e-mail: fletcher@atm.ox.ac.uk
2
Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove
Drive, Pasadena,
CA, 91109, USA
3
University of California, Berkeley, Astronomy Dept., 601 Campbell Hall,
Berkeley, CA
94720-3411,
USA
4
Institut UTINAM, CNRS-UMR 6213, Observatoire de Besançon,
Université de Franche-Comté, Besançon, France
Received: 23 July 2010
Accepted: 27 August 2010
Aims. Thermal infrared imaging and spectroscopy of the July 19, 2009 Jupiter impact site has been used to identify unique features of the physical and chemical atmospheric response to this unexpected collision.
Methods. Images and high-resolution spectra of methane, ethane and acetylene emission (7−13 μm) from the 2009 impact site were obtained by the Very Large Telescope (VLT) mid-infrared camera/spectrometer instrument, VISIR. An optimal estimation retrieval algorithm was used to determine the atmospheric temperatures and hydrocarbon distribution in the month following the impact.
Results. Ethane spectra at 12.25 μm could not be explained by a rise in temperature alone. Ethane was enhanced by 1.7−3.2 times the background abundance on July 26, implying production as the result of shock chemistry in a high C/O ratio environment, favouring an asteroidal origin for the 2009 impactor. Small enhancements in acetylene emission were also observed over the impact site. However, no excess methane emission was found over the impact longitude, either with broadband 7.9-μm imaging 21 h after the impact, or with center-to-limb scans of strong and weak methane lines between 7.9 and 8.1 μm in the ensuing days, indicating either extremely rapid cooling in the initial stages, or an absence of heating in the upper stratosphere (p < 10 mbar) due to the near-horizontal orientation of the impact. Models of 12.3-μm spectra are consistent with a ≈ 3 K rise in the lower stratosphere (p > 10 mbar), though this solution is highly dependent on the spectral properties of stratospheric debris. The enhanced ethane emission was localised over the impact streak, and was diluted in the ensuing weeks by redistribution of heated gases by zonal flow and mixing with the unperturbed jovian air.
Conclusions. The different thermal energy deposition profiles, in addition to the highly reducing (C/O > 1) environment and shallow impactor angle, suggest that (a) the 2009 plume and shock-fronts did not reach the sub-microbar altitudes of the Shoemaker-Levy 9 plumes; and (b) models of a cometary impact are not directly applicable to the unique impact circumstances of July 2009.
Key words: planets and satellites: atmospheres / atmospheric effects / planets and satellites: composition / planets and satellites: individual: Jupiter
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.