Issue |
A&A
Volume 524, December 2010
|
|
---|---|---|
Article Number | A12 | |
Number of page(s) | 9 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201015066 | |
Published online | 19 November 2010 |
Oscillations in a network region observed in the Hα line and their relation to the magnetic field
1
National Observatory of Athens, Institute for Space Applications and Remote
Sensing,
Lofos Koufos,
15236
Palea Penteli,
Greece
e-mail: jkonto@space.noa.gr;
georgia@space.noa.gr;
kostas@space.noa.gr
2
Department of Astrophysics, Astronomy and Mechanics, Faculty of
Physics, National and Kapodistrian University of Athens, 15784
Zografos,
Greece
3
Research Center for Astronomy & Applied Mathematics,
Academy of Athens, 4 Soranou
Efesiou St., 11527
Athens,
Greece
Received:
28
May
2010
Accepted:
13
August
2010
Aims. Our aim is to gain a better understanding of the interaction between acoustic oscillations and the small-scale magnetic fields of the Sun. To this end, we examine the oscillatory properties of a network region and their relation to the magnetic configuration of the chromosphere. We link the oscillatory properties of a network region and their spatial variation with the variation of the parameters of the magnetic field. We investigate the effect of the magnetic canopy and the diverging flux tubes of the chromospheric network on the distribution of oscillatory power over the network and internetwork.
Methods. We use a time series of high resolution filtergrams at five wavelengths along the Hα profile observed with the Dutch Open Telescope, as well as high resolution magnetograms taken by the SOT/SP onboard HINODE. Using wavelet analysis, we construct power maps of the 3, 5 and 7 min oscillations of the Doppler signals calculated at ±0.35 Å and ± 0.7 Å from the Hα line center. These represent velocities at chromospheric and photospheric levels respectively. Through a current-free (potential) field extrapolation we calculate the chromospheric magnetic field and compare its morphology with the Hα filtergrams. We calculate the plasma β and the magnetic field inclination angle and compare their distribution with the oscillatory power at the 3, 5 and 7 min period bands.
Results. Chromospheric mottles seem to outline the magnetic field lines. The Hα ± 0.35 Å Doppler signals are formed above the canopy, while the Hα ± 0.7 Å corresponding ones below it. The 3 min power is suppressed at the chromosphere around the network, where the canopy height is lower than 1600 km, while at the photosphere it is enhanced due to reflection. 3, 5 and 7 min oscillatory power is increased around the network at the photosphere due to reflection of waves on the overlying canopy, while increased 5 and 7 min power at the chromosphere is attributed mainly to wave refraction on the canopy. At these high periods, power is also increased due to p-mode leakage because of the high inclinations of the magnetic field.
Conclusions. Our high resolution Hα observations and photospheric magnetograms provide the opportunity to highlight the details of the interaction between acoustic oscillations and the magnetic field of a network region. We conclude that several mechanisms that have been proposed such as p-mode leakage, mode conversion, reflection and refraction of waves on the magnetic canopy may act together and result to the observed properties of network oscillations.
Key words: Sun: chromosphere / Sun: oscillations
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.