Issue |
A&A
Volume 523, November-December 2010
|
|
---|---|---|
Article Number | A80 | |
Number of page(s) | 17 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201015147 | |
Published online | 18 November 2010 |
A translucent interstellar cloud at z = 2.69
CO, H2, and HD in the line-of-sight to SDSS J123714.60 + 064759.5⋆
1
Departamento de AstronomíaUniversidad de Chile,
Casilla 36-D,
Santiago,
Chile
e-mail: pasquier@das.uchile.cl; slopez@das.uchile.cl
2
Université Paris 6, Institut d’Astrophysique de Paris, CNRS UMR
7095, 98bis bd
Arago, 75014
Paris,
France
e-mail: petitjean@iap.fr
3
European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001,
Santiago 19,
Chile
e-mail: cledoux@eso.org
4
Inter-University Centre for Astronomy and Astrophysics,
Post Bag 4,
Ganeshkhind, 411
007
Pune,
India
e-mail: anand@iucaa.ernet.in
5
Université Paris 7, APC, CNRS UMR 7164,
10 rue Alice Domon et Léonie
Duquet, 75205
Paris Cedex 13,
France
6
GEPI, Observatoire de Paris, CNRS UMR 8111,
5 place Jules
Janssen, 92195
Meudon,
France
e-mail: vergani@apc.univ-paris7.fr
Received:
3
June
2010
Accepted:
2
August
2010
We present the analysis of a sub-damped Lyman-α system with neutral
hydrogen column density,
log N(H0) (cm-2) = 20.0 ± 0.15 at
zabs = 2.69 toward SDSS J123714.60 + 064759.5
(zem = 2.78). Using the VLT/UVES and X-shooter
spectrographs, we detect H2, HD, and CO molecules in absorption with
log N(H2, HD,
CO) (cm-2) = 19.21, 14.48 ± 0.05 and 14.17 ± 0.09 respectively. The overall
metallicity of the system is super-solar ([Zn/H] = +0.34 relative to solar) and iron is
highly depleted ([Fe/Zn] = −1.39), revealing metal-rich and dusty gas. Three
H2 velocity components spanning ~125 km s-1 are detected. The
strongest H2 component, at zabs = 2.68955,
with log N(H2) = 19.20, does not coincide
with the centre of the H i absorption. This implies that the molecular fraction
in this component,
fH2 = 2N(H2)/(2N(H2)+N(H0)),
is higher than the mean molecular fraction
⟨fH2⟩ = 1/4 in the system. We also found the
Cl0 associated with this H2 component to have
N(Cl0)/N(Cl+) > 0.4,
which points in the same direction. Cl0 is tied to H2 by charge
exchange reactions, this means that the molecular fraction in this component is not far
from unity. The kinetic temperature derived from the J = 0 and 1
rotational levels of H2 is
K and the particle density derived from the C0
ground-state fine structure level populations is
nH0 ~ 50–60 cm-3. We derive an electronic
density <2 cm-3 for a UV field similar to the Galactic
one and show that the carbon-to-sulphur ratio in the cloud is close to the solar ratio.
The size of the molecular cloud is probably smaller than 1 pc. Both the
CO/H2 = 10-5 and CO/C0 ~ 1 ratios for
fH2 > 0.24 indicate that the
cloud classifies as translucent, i.e., a regime where carbon is found
both in atomic and molecular form. The corresponding extinction,
AV = 0.14, albeit lower than the definition of a translucent
sightline (based on extinction properties), is high for the observed
H0 column density. This means that intervening clouds with similar local
properties but with higher column densities (i.e. larger physical extent) could be missed
by current magnitude-limited QSO surveys. The excitation of CO is dominated by radiative
interaction with the cosmic microwave background radiation (CMBR) and we derive
Tex(CO) = 10.5
K when
TCMBR(z = 2.69) = 10.05 K is expected. We
measure
N(HD) / 2N(H2) = 10-5.
This is about 10 times higher than what is measured in the Galactic ISM for
fH2 = 1/4 but similar to what
is measured in the Galactic ISM for higher molecular fractions. The astration factor of
deuterium with respect to the primordial D/H ratio is only about 3. This can be the
consequence of accretion ofunprocessed gas from the intergalactic medium onto the
associated galaxy. In the future, it will be possible to search efficiently for
molecular-rich DLAs/sub-DLAs with X-shooter, but detailed studies of the physical state of
the gas will still need UVES observations.
Key words: cosmology: observations / galaxies: ISM / quasars: absorption lines / quasars: individual: SDSS J123714.60 + 064759.5
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.