Issue |
A&A
Volume 521, October 2010
|
|
---|---|---|
Article Number | A71 | |
Number of page(s) | 16 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201014130 | |
Published online | 21 October 2010 |
Structural properties of disk galaxies
II. Intrinsic shape of bulges
1
Instituto Astrofísico de
Canarias, Calle via Láctea s/n, 38200 La Laguna, Spain e-mail: [jairo;jalfonso]@iac.es
2
Departamento de Astrofísica, Universidad de La Laguna,
38205 La Laguna, Tenerife, Spain
3
Institut d'Astrophysique de Paris,
C.N.R.S.-U.P.M.C., 98bis Boulevard Arago, 75014 Paris, France
4
Dipartimento di Astronomia, Università di Padova,
vicolo dell'Osservatorio 3, 35122 Padova, Italy e-mail: enricomaria.corsini@unipd.it
Received:
25
January
2010
Accepted:
23
June
2010
Context. Knowledge of the intrinsic shapes of galaxy components provides crucial information when constraining phenomena driving their formation and evolution.
Aims. We analize the structural parameters of a magnitude-limited sample of 148 unbarred S0–Sb galaxies to derive the intrinsic shape of their bulges.
Methods. We developed a new method to derive the intrinsic shapes of bulges based on geometrical relationships between the apparent and intrinsic shapes of bulges and disks. Bulges were assumed to be triaxial ellipsoids sharing the same center and polar axis of their surrounding disks. Disks were assumed to be circular, infinitesimally thin, and to lie on the equatorial plane of bulges. The equatorial ellipticity and intrinsic flattening of bulges were obtained from the length of the apparent major and minor semi-axes of the bulge, the twist angle between the apparent major axis of the bulge and the galaxy line of nodes, and the galaxy inclination.
Results. We find that the intrinsic shape is well constrained for a subsample of 115 bulges with favorable viewing angles. A large fraction of them are characterized by an elliptical section (B/A < 0.9). This fraction is 33%, 55%, and 43% if using their maximum, mean, or median equatorial ellipticity, respectively. Most are flattened along their polar axis (C < (A+B)/2). Only 18% of the observed bulges have a probability > 50% and none has a probability > 90% of being elongated along the polar axis. The distribution of triaxiality is strongly bimodal. This bimodality is driven by bulges with Sérsic index n > 2, or equivalently, by the bulges of galaxies with a bulge-to-total ratio B/T > 0.3. Bulges with n ≤ 2 and with B/T ≤ 0.3 follow a similar distribution, which differs from that of bulges with n > 2 and B/T > 0.3. In particular, bulges with n ≤ 2 and B/T ≤ 0.3 exhibit a larger fraction of oblate axisymmetric (or nearly axisymmetric) bulges, a smaller fraction of triaxial bulges, and fewer prolate axisymmetric (or nearly axisymmetric) bulges with respect to bulges with n > 2 and with B/T > 0.3, respectively. No correlation is found between the intrinsic shape and either the luminosity or velocity dispersion of bulges.
Conclusions. According to predictions of the numerical simulations of bulge formation, bulges with n ≤ 2, which show a high fraction of oblate axisymmetric (or nearly axisymmetric) shapes and have B/T ≤ 0.3, may be the result of dissipational minor mergers. Both major dissipational and dissipationless mergers seem to be required to explain the variety of shapes found for bulges with n > 2 and B/T > 0.3.
Key words: galaxies: bulges / galaxies: elliptical and lenticular, cD / galaxies: photometry / galaxies: spiral / galaxies: statistics / galaxies: structure
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.