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ABSTRACT

Context. Knowledge of the intrinsic shapes of galaxy components provides crucial information when constraining phenomena driving
their formation and evolution.
Aims. We analize the structural parameters of a magnitude-limited sample of 148 unbarred S0–Sb galaxies to derive the intrinsic
shape of their bulges.
Methods. We developed a new method to derive the intrinsic shapes of bulges based on geometrical relationships between the
apparent and intrinsic shapes of bulges and disks. Bulges were assumed to be triaxial ellipsoids sharing the same center and polar axis
of their surrounding disks. Disks were assumed to be circular, infinitesimally thin, and to lie on the equatorial plane of bulges. The
equatorial ellipticity and intrinsic flattening of bulges were obtained from the length of the apparent major and minor semi-axes of the
bulge, the twist angle between the apparent major axis of the bulge and the galaxy line of nodes, and the galaxy inclination.
Results. We find that the intrinsic shape is well constrained for a subsample of 115 bulges with favorable viewing angles. A large
fraction of them are characterized by an elliptical section (B/A < 0.9). This fraction is 33%, 55%, and 43% if using their maximum,
mean, or median equatorial ellipticity, respectively. Most are flattened along their polar axis (C < (A + B)/2). Only 18% of the
observed bulges have a probability >50% and none has a probability >90% of being elongated along the polar axis. The distribution
of triaxiality is strongly bimodal. This bimodality is driven by bulges with Sérsic index n > 2, or equivalently, by the bulges of galaxies
with a bulge-to-total ratio B/T > 0.3. Bulges with n ≤ 2 and with B/T ≤ 0.3 follow a similar distribution, which differs from that of
bulges with n > 2 and B/T > 0.3. In particular, bulges with n ≤ 2 and B/T ≤ 0.3 exhibit a larger fraction of oblate axisymmetric
(or nearly axisymmetric) bulges, a smaller fraction of triaxial bulges, and fewer prolate axisymmetric (or nearly axisymmetric) bulges
with respect to bulges with n > 2 and with B/T > 0.3, respectively. No correlation is found between the intrinsic shape and either the
luminosity or velocity dispersion of bulges.
Conclusions. According to predictions of the numerical simulations of bulge formation, bulges with n ≤ 2, which show a high fraction
of oblate axisymmetric (or nearly axisymmetric) shapes and have B/T ≤ 0.3, may be the result of dissipational minor mergers. Both
major dissipational and dissipationless mergers seem to be required to explain the variety of shapes found for bulges with n > 2 and
B/T > 0.3.

Key words. galaxies: bulges – galaxies: elliptical and lenticular, cD – galaxies: photometry – galaxies: spiral – galaxies: statistics –
galaxies: structure

1. Introduction

The halos of cold dark matter assembled in cosmological simu-
lations appear to be strongly triaxial (see Allgood et al. 2006,
and references therein). Their intrinsic shape is characterized
by an intermediate-to-long axis ratio B/A and a short-to-long
axis ratio C/A that can vary as a function of radius. In con-
trast, the halo shape inferred from observations of the Milky
Way (Olling & Merrifield 2000; Ibata et al. 2001; Johnston et al.
2005) and a number of individual nearby galaxies (Merrifield
2004) is nearly axisymmetric. The study of the intrinsic shapes
of luminous galactic components may serve to constrain the halo
shape, which is related to the final morphology of the galaxy and
depends on the phenomena driving its formation and evolution
(e.g., Heller et al. 2007). The intrinsic shapes of elliptical galax-
ies and disks have been extensively studied, whereas bulges have

been less well studied, even if they account for about 25% of the
stellar mass of the local universe (Driver et al. 2007).

1.1. Intrinsic shape of elliptical galaxies

The first attempt to derive the intrinsic shape of elliptical galax-
ies was performed by Hubble (1926). The distribution of their
intrinsic flattenings was obtained from the observed ellipticities
based on the assumption that elliptical galaxies were oblate el-
lipsoids with a random orientation with respect to the line of
sight. Early studies assumed that elliptical galaxies are axisym-
metric systems. Oblateness and prolateness were assumed by
Sandage et al. (1970) and Binney (1978), respectively to repro-
duce the distribution of observed ellipticities of the Reference
Catalog of Bright Galaxies (de Vaucouleurs & de Vaucouleurs
1964, hereafter RC1).
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Afterwards, a number of kinematic and photometric mea-
surement implied that elliptical galaxies may also have a triaxial
shape. The low ratio of rotational velocity to velocity dispersion
(Bertola & Capaccioli 1975; Illingworth 1977), the twisting of
isophotes (Carter 1978; Bertola & Galletta 1979; Galletta 1980),
and the rotation measured along the minor axis (Schechter &
Gunn 1979) of some elliptical galaxies could not be explained in
terms of axisymmetric ellipsoids. As a consequence, Benacchio
& Galletta (1980) and Binney & de Vaucouleurs (1981) showed
that the distribution of observed ellipticities could be satisfac-
torily accounted for also in terms of a distribution of triaxial
ellipsoids. Similar conclusions were reached by Fasano & Vio
(1991), Lambas et al. (1992), Ryden (1992, 1996), and Fasano
(1995). However, different galaxy samples and different assump-
tions about triaxiality resulted in different distributions of intrin-
sic axial ratios. In addition, not all the elliptical galaxies have
the same intrinsic shape. Tremblay & Merritt (1996) found that
the distribution of the observed ellipticities of galaxies brighter
than MB � −20 differs from that of the less luminous ones. In
particular, there is a relative lack of highly-flattened bright ellip-
ticals. This reflects a difference in the shape of low-luminosity
and high-luminosity ellipticals: fainter ellipticals are moderately
flattened and oblate, while brighter ellipticals are rounder and
triaxial. Fasano et al. (2010) also found that even if both nor-
mal ellipticals and brightest cluster galaxies (BCG) are triaxial,
BCGs tend to have a more prolate shape, and that this tendency
to prolateness is mainly driven by the cD galaxies present in their
sample of BCGs. These statistical analyses can be performed
more reliably for large galaxy samples, such as those studied
by Kimm & Yi (2007) and Padilla & Strauss (2008). These au-
thors analyzed the observed ellipticities of early-type galaxies in
the Sloan Digital Sky Survey (Adelman-McCarthy et al. 2006).
Furthermore, these large datasets allowed them to study the de-
pendence of the intrinsic shape on other galaxy properties, such
as the luminosity, color, physical size, and environment.

The distribution of the intrinsic shape of elliptical galaxies
can also be derived by combining photometric and kinematic in-
formation (Binney 1985; Franx et al. 1991). However, the result-
ing distribution of intrinsic flattenings, equatorial ellipticities,
and intrinsic misalignments between the angular momentum and
the intrinsic short axis cannot be derived uniquely. Only two ob-
servables are indeed available, the distribution of observed el-
lipticities and the distribution of kinematic misalignments be-
tween the photometric minor axis and the kinematic rotation
axis. Therefore, additional assumptions about the intrinsic shape
and direction of the angular momentum are needed to simplify
the problem. In addition, this approach requires a large sample
of galaxies for which the kinematic misalignment is accurately
measured. However, to date this information is available for only
a few tens of galaxies (Franx et al. 1991).

Many individual galaxies have been investigated by detailed
dynamical modeling of the kinematics of gas, stars, and plan-
etary nebulae (e.g., Tenjes et al. 1993; Statler 1994; Statler
& Fry 1994; Mathieu & Dejonghe 1999; Gerhard et al. 2001;
Gebhardt et al. 2003; Cappellari et al. 2007; Thomas et al. 2007;
de Lorenzi et al. 2009). van den Bosch & van de Ven (2009)
investigated how well the intrinsic shape of elliptical galaxies
can be recovered by fitting realistic triaxial dynamical models to
simulated photometric and kinematic observations. The recovery
based on orbit-based models and state-of-the-art data is degen-
erate for round or non-rotating galaxies. The intrinsic flattening
of oblate ellipsoids is almost only able to be constrained by pho-
tometry. The shape of triaxial galaxies is accurately determined
when additional photometric and kinematic complexity, such as

the presence of an isophotal twist and a kinematically decou-
pled core, is observed. Finally, the intrinsic shape of individual
galaxies can be also constrained from the observed ellipticity
and isophotal twist by assuming the intrinsic density distribution
(Williams 1981; Chakraborty et al. 2008).

1.2. Intrinsic shape of disk galaxies

Although the disks of lenticular and spiral galaxies are often con-
sidered to be infinitesimally thin and perfectly circular, their in-
trinsic shape is more accurately approximated by flattened triax-
ial ellipsoids.

The disk thickness can be directly determined for edge-on
galaxies. It depends on both the wavelength at which disks are
observed and on the galaxy morphological type. Indeed, galac-
tic disks become thicker at longer wavelengths (Dalcanton &
Bernstein 2002; Mitronova et al. 2004) and late-type spirals
have thinner disks than early-type spirals (Bottinelli et al. 1983;
Guthrie 1992).

Determining the distribution of both the thickness and el-
lipticity of disks is possible by performing a statistical analy-
sis of the distribution of apparent axial ratios of randomly ori-
ented spiral galaxies. Sandage et al. (1970) analyzed the spiral
galaxies listed in the RC1. They concluded that disks are circu-
lar with a mean flattening 〈C/A〉 = 0.25. However, the lack of
nearly circular spiral galaxies (B/A � 1) excludes disks have
from having a perfectly axisymmetric shape. Binggeli (1980),
Benacchio & Galletta (1980), and Binney & de Vaucouleurs
(1981) showed that disks are slightly elliptical with a mean el-
lipticity 〈1 − B/A〉 = 0.1. These early findings were based on
the analysis of photographic plates of a few hundreds of galax-
ies and later, confirmed by measuring the ellipticities of several
thousands of objects in CCD images and digital scans of plates
obtained in wide-field surveys. The large number of objects per-
mits the constraint of the distribution of the intrinsic equatorial
ellipticity, which is well fitted by a one-sided Gaussian centered
on 1 − B/A = 0 with a standard deviation ranging from 0.1
to 0.2 and a mean of 0.1 (Lambas et al. 1992; Fasano et al.
1993; Alam & Ryden 2002; Ryden 2004). Similar results were
obtained also combining photometric and kinematics measure-
ments (Andersen et al. 2001). As for the flattening, the intrinsic
ellipticity depends on the morphological type and wavelength.
The disks of early-type spirals are more elliptical than those of
late-type spirals and their median ellipticity increases with ob-
served wavelength (Ryden 2006). Furthermore, luminous spi-
ral galaxies tend to have thicker and rounder disks than low-
luminosity spiral galaxies (Padilla & Strauss 2008). Different
mechanisms have been proposed to account for disk thicken-
ing, including the scattering of stars off giant molecular clouds
(Spitzer & Schwarzschild 1951; Villumsen 1985), transient den-
sity waves of the spiral arms (Barbanis & Woltjer 1967; Carlberg
& Sellwood 1985), and minor mergers with satellite galaxies
(e.g., Quinn et al. 1993; Walker et al. 1996).

The study of the intrinsic shape of bulges has encountered
similarities, advantages, and drawbacks with respect to studies
of elliptical galaxies. For bulges, the problem is complicated by
the presence of other luminous components and their light dis-
tribution has to be carefully isolated. This can be achieved by
performing a photometric decomposition of the galaxy surface-
brightness distribution. The galaxy light is usually modeled as
the sum of the contributions of the different galactic compo-
nents, i.e., bulge and disk, and eventually lenses, bars, spiral
arms, and rings (Prieto et al. 2001; Aguerri et al. 2005). A num-
ber of two-dimensional parametric decomposition techniques
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have been developed to achieve this aim (e.g., Simard 1998;
Khosroshahi et al. 2000; Peng et al. 2002; de Souza et al. 2004;
Laurikainen et al. 2005; Pignatelli et al. 2006; Méndez-Abreu
et al. 2008). On the other hand, the presence of the galactic
disk allows us to accurately constrain the inclination of the bulge
based on the assumption that the two components share the same
polar axis (i.e., the equatorial plane of the disk coincides with
that of the bulge).

In a similar way to elliptical galaxies, bulges are diverse and
heterogeneous objects. Large bulges of lenticulars and early-
type spirals are similar to low-luminosity elliptical galaxies. In
contrast, small bulges of late-type spirals are reminiscent of
disks (see the reviews by Kormendy 1993; Wyse et al. 1997;
Kormendy & Kennicutt 2004). Some of them have a quite com-
plex structure and host nuclear rings (see Buta 1995; Comerón
et al. 2010, for a compilation), inner bars (see Erwin 2004,
for a list), and embedded disks (e.g., Scorza & Bender 1995;
van den Bosch et al. 1998; Pizzella et al. 2002). Although the
kinematical properties of many bulges are well described by dy-
namical models of oblate ellipsoids that are flattened by rota-
tion with little or no anisotropy (Kormendy & Illingworth 1982;
Davies & Illingworth 1983; Fillmore 1986; Corsini et al. 1999;
Pignatelli et al. 2001; Cappellari et al. 2006), the twisting of
the bulge isophotes (Lindblad 1956; Zaritsky & Lo 1986) and
the misalignment between the major axes of the bulge and disk
(Bertola et al. 1991; Varela et al. 1996; Méndez-Abreu et al.
2008) observed in several galaxies cannot be explained if the
bulge and disk are both axisymmetric. These features have been
interpreted as the signature of bulge triaxiality. This idea is sup-
ported by the presence of non-circular gas motions (e.g., Gerhard
& Vietri 1986; Bertola et al. 1989; Gerhard et al. 1989; Berman
2001; Falcón-Barroso et al. 2006; Pizzella et al. 2008) and a ve-
locity gradient along the galaxy minor axis (e.g., Corsini et al.
2003; Coccato et al. 2004, 2005).

Perfect axisymmetry is also ruled out when the intrinsic
shape of bulges is determined by statistical analyses based on
their observed ellipticities. Bertola et al. (1991) measured the
bulge ellipticity and the misalignment between the major axes
of the bulge and disk in 32 S0–Sb galaxies. They found that
these bulges are triaxial with mean axial ratios 〈B/A〉 = 0.86
and 〈C/A〉 = 0.65. In contrast, measurements of 〈B/A〉 = 0.79
for the bulges of 35 early-type disk galaxies and 〈B/A〉 = 0.71
for the bulges of 35 late-type spirals were found by Fathi &
Peletier (2003). They derived the equatorial ellipticity by ana-
lyzing the deprojected ellipticity of the ellipses by fitting the
galaxy isophotes within the bulge radius. None of the 21 disk
galaxies with morphological types between S0 and Sab studied
by Noordermeer & van der Hulst (2007) harbors a truly spheri-
cal bulge. A mean flattening 〈C/A〉 = 0.55 was obtained based
on assumption of bulge oblateness by comparing the isophotal
ellipticity in the bulge-dominated region to that measured in the
disk-dominated region. Mosenkov et al. (2010) obtained a me-
dian flattening 〈C/A〉 = 0.63 for a sample of both early and
late-type edge-on galaxies in the near infrared. They also found
that bulges with Sérsic index n < 2 can be described as tri-
axial, nearly prolate bulges that are seen from different projec-
tions, while n > 2 bulges are more closely represented by oblate
spheroids with moderate flattening.

In Méndez-Abreu et al. (2008, hereafter Paper I), we mea-
sured the structural parameters of a magnitude-limited sample
of 148 unbarred early-to-intermediate spiral galaxies by per-
forming a detailed photometric decomposition of their near-
infrared surface-brightness distribution. The probability distri-
bution function (PDF) of the bulge equatorial ellipticity was

derived from the distributions of observed ellipticities of bulges
and misalignments between bulges and disks. We proved that
about 80% of the sample bulges are not oblate but triaxial ellip-
soids with a mean axial ratio 〈B/A〉 = 0.85. The PDF does not
depend significantly on morphology, light concentration, or lu-
minosity and is independent of the possible presence of nuclear
bars. This has been by far the largest sample of bulges studied to
determine their intrinsic shape.

In this paper, we introduce a new method to derive the intrin-
sic shape of bulges based on the assumption of triaxiality. This
statistical analysis is based upon the analytical relations between
the observed and intrinsic shapes of bulges and their surrounding
disks and is applied to the galaxy sample described in Paper I.
The method was conceived to be completely independent of the
studied class of objects, and can be applied whenever triaxial
ellipsoids embedded in (or embedding) an axisymmetric com-
ponent are considered.

The structure of the paper is as follows. The basic description
of the geometry of the problem and main definitions are given in
Sect. 2. The statistical analysis of the equatorial ellipticity and
intrinsic flattening of bulges is presented in Sects. 3 and 4, re-
spectively. The intrinsic shape of bulges is discussed in Sect. 5.
The conclusions are presented in Sect. 6.

2. Basic geometrical considerations

In Paper I, we assume that the bulge is a triaxial ellipsoid and
that the disk is circular and lies in the equatorial plane of the
bulge. The bulge and disk share the same center and polar axis.
Therefore, the inclination of the polar axis (i.e., the galaxy incli-
nation) and the position angle of the line of nodes (i.e., the po-
sition angle of the galaxy major axis) are directly derived from
the observed ellipticity and orientation of the disk, respectively.

We already introduced in Paper I the basic geometrical defi-
nitions about the triaxial ellipsoidal bulge and its deprojection as
a function of the main parameters describing the problem, i.e.,
the ellipticity e of the projected ellipse, twist angle δ between its
major axis and the line of nodes, galaxy inclination θ, and ori-
entation φ of the equatorial axes of the bulge with respect to the
line of nodes. However, for the sake of clarity we again review
these concepts in this section together with the new definitions
needed to perform our statistical approach.

2.1. Direct problem: from ellipsoids to ellipses

We define (x, y, z) to be the Cartesian coordinates with an ori-
gin at the galaxy center, the x-axis and y-axis corresponding to
the principal equatorial axes of the bulge, and the z-axis corre-
sponding to the polar axis. Since the equatorial plane of the bulge
coincides with the equatorial plane of the disk, the z-axis is also
the polar axis of the disk. If A, B, and C are the lengths of the
ellipsoid semi-axes, the corresponding equation of the bulge in
its own reference system is given by

x2

A2
+
y2

B2
+

z2

C2
= 1. (1)

We note that we do not assume that A ≥ B ≥ C, as usually done
in the literature.

We define (x′, y′, z′) to be now the cartesian coordinates of
the observer system. It has its origin at the galaxy center, the
polar z′-axis being aligned along the line of sight (LOS) and
pointing toward the galaxy. The plane of the sky lies in the
(x′, y′) plane.
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The projection of the disk onto the sky plane is an ellipse
whose major axis is the line of nodes (LON), i.e., the inter-
section between the galactic and sky planes. The angle θ be-
tween the z-axis and z′-axis corresponds to the inclination of the
galaxy and therefore of the bulge ellipsoid; it can be derived as
θ = arccos (d/c) from the length c and d of the two semi-axes
of the projected ellipse of the disk. We defined φ (0 ≤ φ ≤ π/2)
as the angle between the x-axis and the LON on the equatorial
plane of the bulge (x, y). We also defined ψ (0 ≤ ψ ≤ π/2) as the
angle between the x′-axis and the LON on the sky plane (x′, y′).
The three angles θ, φ, and ψ are the usual Euler angles and re-
late the reference system (x, y, z) of the ellipsoid to the system
(x′, y′, z′) of the observer by means of three rotations (see Fig. 1).
Since the location of the LON is known, we can indeed select the
x′-axis to be aligned in its direction, and consequently assume
that ψ = 0. By applying these two rotations to Eq. (1), it is possi-
ble to derive the equation of the ellipsoidal bulge in the reference
system of the observer, as well as the equation of the ellipse cor-
responding to its projection on the sky plane (Simonneau et al.
1998). If we now identify the latter with the ellipse projected
by the observed ellipsoidal bulge, we can determine the position
of its axes of symmetry xe and ye and the lengths a and b of the
corresponding semi-axes. The xe− axis forms an angle δwith the
LON corresponding to the x′-axis of the sky plane. We always
choose 0 ≤ δ ≤ π/2, such that a can be either the major or the
minor semi-axis. If a corresponds to the major semi-axis then b
is the length of the minor semi-axis. If a corresponds to the mi-
nor semi-axis then b is the length of the major semi-axis. When
we later present our statistical analysis, we find that these two
possibilities are equivalent because one axis is the mirror image
of the other.

From previous considerations (see Simonneau et al. 1998,
for details), we find that the equations relating the length of the
semi-axes of the projected ellipse to the length of the semi-axes
of the intrinsic ellipsoid are given by

a2b2 = A2C2 sin2 θ cos2 φ + B2C2 sin2 θ sin2 φ + A2B2 cos2 θ, (2)

a2 + b2 = A2(cos2 φ + cos2 θ sin2 φ)

+B2(sin2 φ + cos2 θ cos2 φ) + C2 sin2 θ, (3)

tan 2δ

=
(B2 − A2) cos θsin 2φ

A2(cos2 θsin2φ−cos2φ)+B2(cos2θcos2φ−sin2φ)+C2sin2θ
· (4)

If the ellipsoidal bulge is not circular in the equatorial plane (A �
B) then it is possible to observe a twist (δ � 0; see Eq. (4))
between the axes of the projected ellipses of the bulge and disk.

2.2. Inverse problem: from ellipses to ellipsoids

We now focus our attention on the inverse problem, i.e., the
problem of deprojection. Following Simonneau et al. (1998),
from Eqs. (2), (3), and (4), we are able to express the length
of the bulge semi-axes (A, B, and C) as a function of the length
of the semi-axes of the projected ellipse (a, b) and the twist an-
gle (δ).

For the sake of clarity, we rewrite here the corresponding
equations but in a different way with respect to Paper I. First, we
define

K2 =
a2 + b2

2
[1 + e cos 2δ] , (5)

where

e =
a2 − b2

a2 + b2
− 1 ≤ e ≤ 1, (6)

is, in some sense, a measure of the ellipticity of the observed
ellipse. Therefore, K2 is a positive measurable quantity.

From Eqs. (2)−(4), we find that

K2 =
A2 + B2

2
[
1 + E cos 2φ

]
, (7)

where

E =
A2 − B2

A2 + B2
− 1 ≤ E ≤ 1, (8)

measures the intrinsic equatorial ellipticity of the bulge.
With this notation, we can rewrite the equations for the semi-

axes of the bulge in the form

A2 = K2

(
1 +

e sin 2δ
1 + e cos 2δ

tanφ
cos θ

)
, (9)

B2 = K2

(
1 − e sin 2δ

1 + e cos 2δ
cotφ
cos θ

)
, (10)

C2 = K2

⎛⎜⎜⎜⎜⎜⎝1 − 2 e cos 2δ

sin2 θ (1 + e cos 2δ)

+
2 e cos θ sin 2δ

sin2 θ (1 + e cos 2δ)
cot2 φ

⎞⎟⎟⎟⎟⎟⎠. (11)

The values of a, b, δ, and θ can be directly obtained from ob-
servations. Unfortunately, the relation between the intrinsic and
projected variables also depends on the spatial position of the
bulge (i.e., on the φ angle), which is actually the unique un-
known of our problem, and constitutes the basis of our statistical
analysis.

2.3. Characteristic angles

There are physical constraints that limit the possible values of φ,
such as the positive length of the three semi-axes of the ellipsoid
(Simonneau et al. 1998). Therefore, we define some character-
istic angles that constrain the range of φ. Two different possibil-
ities must be taken into account for any value of the observed
variables a, b, δ, and θ.

The first case corresponds to a > b. It implies that e > 0
from Eq. (6) and A > B from Eqs. (9) and (10). For any value
of φ, A2 > K2 and K2 is always positive according to Eq. (7).
On the other hand, B2 and C2 can be either positive or negative
depending on the value of φ according to Eqs. (10) and (11),
respectively. This limits the range of the values of φ. The value
of B2 is positive only for φ > φB. The angle φB is defined by
B2 = 0 in Eq. (10) to be

tan φB =
e sin 2δ

cos θ (1 + e cos 2δ)
· (12)

Likewise, C2 is positive only for values of φ < φC . The angle φC
is defined by C2 = 0 in Eq. (11) to be

tan 2φC =
2 e sin 2δ cos θ

e cos 2δ
(
1 + cos2 θ

) − sin2 θ
· (13)

Thus, if a > b then the values of φ can only be in the range
φB ≤ φ ≤ φC .

The second case corresponds to a < b. It implies that e < 0
(Eq. (6)) and A < B (Eqs. (9) and (10)). For any value of φ, B2 >
K2 and K2 is always positive according to Eq. (7). But, A2 and C2

can be either positive or negative depending on the value of φ
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Fig. 1. Schematic three-dimensional view of the ellipsoid geometry. The bulge ellipsoid, the disk plane, and the sky plane are shown in red, blue,
and green, respectively. The reference systems of the ellipsoid and the observer as well as the LON are plotted with thin solid lines, thin dashed
lines, and a thick solid line, respectively. The bulge ellipsoid is shown as seen from an arbitrary viewing angle (left panel), along the LOS (central
panel), and along the polar axis (i.e., the z-axis; right panel).

according to Eqs. (9) and (11), respectively. This limits the range
of the values of φ. A2 is positive only for φ < φA. The angle φA
is defined by A2 = 0 in Eq. (9) as

tan φA = −cos θ (1 + e cos 2δ)
e sin 2δ

· (14)

Likewise, C2 is positive only for values of φ > φC . The angle φC
is given in Eq. (13). Thus, if a < b, then the values φ can only be
in the range φC ≤ φ ≤ φA.

However, the problem is symmetric: the second case, in
which the first semi-axis of the observed ellipse (which is mea-
sured clockwise from the LON) corresponds to the minor axis
(i.e., a < b), is the mirror situation of the first, where the first
measured semi-axis of the observed ellipse corresponds to the
major axis (i.e., a > b). In the second case, if we assume that
the angle π/2 − δ defines the position of the major semi-axis a
of the observed ellipse with respect to the LON in the sky plane,
and π/2 − φ defines the position of the major semi-axis A of the
equatorial ellipse of the bulge with respect to the LON in the
bulge equatorial plane, then we can always consider a > b and
A > B. Therefore, we always have that e ≥ 0 and E ≥ 0. This
means that we have the same mathematical description in both
cases: the possible values of φ are φB ≤ φ ≤ φC with φB and φC
defined by Eqs. (12) and (13), respectively. Furthermore, we can
rewrite Eqs. (9)−(11)

A2 = K2 [
1 + tanφB tan φ

]
, (15)

B2 = K2

[
1 − tanφB

tanφ

]
, (16)

C2 = K2 2 tanφB
cos2 θ

sin2 θ

[
cot 2 φ − cot 2 φC

]
, (17)

where φB and φC are given as a function of the observed vari-
ables a, b, δ, and θ, i.e., they are known functions for each ob-
served bulge.

We can always consider A > B as explained before.
However, we do not impose any constraint on the length C of
the polar semi-axis. According to this definition, oblate and pro-
late triaxial ellipsoids do not necessarily have an axisymmetric
shape. We define a triaxial ellipsoid as completely oblate if C

is smaller than both A and B (i.e., the polar axis is the shortest
axis of the ellipsoid). We define a triaxial ellipsoid as completely
prolate if C is greater than both A and B (i.e., the polar axis is
the longest axis of the ellipsoid). If the polar axis is the interme-
diate axis, we have either a partially oblate or a partially prolate
triaxial ellipsoid. A further detailed description of all these cases
is given at the end of this section.

From Eq. (16), we find that the semi-axis length B is zero for
φ = φB and increases when φ goes from φB to φC . The semi-axis
length C is zero for φ = φC and decreases when φ goes from φB

to φC . There is an intermediate value φBC for which B2 = C2.
This angle is given by

tan φBC =
tan δ
cos θ

· (18)

For φBC < φ < φC, C2 < B2 and both of them are smaller
than A2. This implies that in this range of φ the corresponding
triaxial ellipsoid is completely oblate.

On the other hand, B2 < A2 for all possible values of φ. This
is not the case for C2, because it increases when φ decreases.
Thus, we can define a new angle φAC for which C2 = A2. This
angle is given by

tan φAC = cos θ tan δ. (19)

For φ < φAC , C2 > A2 > B2. Therefore, the corresponding tri-
axial ellipsoid is completely prolate. It is important to note here
that this case is physically possible only when φAC > φB, and the
values of φ are within the range of possible values φB ≤ φ ≤ φC .
Therefore, we conclude that for any observed bulge (i.e., for any
set of measured values of a, b, δ, and θ) the corresponding triax-
ial ellipsoid may always be completely oblate, while we are not
sure that it could be prolate.

We define the quadratic mean radius of the equatorial ellipse
of the bulge to extensively discuss all the different possibilities,
to be

R2 =
A2 + B2

2
= K2 tanφB

[
cot φB − cot 2 φ

]
, (20)

which depends only on the unknown position φ.
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Fig. 2. The lengths A, B, and C of the semi-axes of the bulge ellipsoid and its mean equatorial radius R as a function of the angle φ. The solid lines
correspond to the ranges of physically possible values of A, B, C, and R, while the dotted lines show their overall trends within 0 ≤ φ ≤ π/2. A
triaxial bulge with φAC < φRC < φB, φAC < φB < φRC , and φB < φAC < φRC is shown in the left, central, and right panel, respectively.

Since A2 > B2, A2 ≥ R2 ≥ B2 but there is always a value φRC
corresponding to the case C2 = R2

tan 2φRC = tan 2δ
1 + cos2 θ

2 cos θ
· (21)

The mean equatorial radius allows us to distinguish oblate (C2 <
R2) and prolate (C2 > R2) triaxial ellipsoids. Unfortunately, the
situation is more complicated and there are four different pos-
sibilities for the intrinsic shape of the bulge ellipsoid. They are
sketched in Fig. 2 and can be described as follows:

– if φAC < φRC < φB, the triaxial ellipsoid is always oblate
(Fig. 2, left panel). It is either completely oblate (i.e., A >
B > C) if R > B > C (φBC < φ < φC) or partially oblate if
R > C > B (φB < φ < φBC);

– if φAC < φB < φRC, the triaxial ellipsoid can be either
oblate or prolate (Fig. 2, central panel). It is either com-
pletely oblate if R > B > C (φBC < φ < φC), or partially
oblate if R > C > B (φRC < φ < φBC), or partially prolate if
C > R > B (φB < φ < φRC);

– if φB < φAC < φRC, four different possibilities are allowed for
the triaxial shape of the bulge ellipsoid (Fig. 2, right panel).
It is either completely oblate if R > B > C (φBC < φ <
φC), or partially oblate if R > C > B (φRC < φ < φBC),
or either partially prolate if A > C > R (φAC < φ < φBC)

or completely prolate (i.e., C > A > B) if C > A > R
(φB < φ < φAC).

3. Equatorial ellipticity of bulges

In Paper I, we focused on the equatorial ellipticity defined in
Eq. (8). This is a straightforward definition derived from the
equations involved in projecting and deprojecting triaxial ellip-
soids. It allows us to solve the problem of inverting an integral
equation to derive the PDF of the equatorial ellipticity of bulges.
However, the usual axial ratio B/A is a more intuitive choice for
describing the equatorial ellipticity of the bulge when only one
galaxy is considered. We therefore redefine the equatorial ellip-
ticity as Z = B2/A2. Adopting a squared quantity enables us to
successfully perform an analytic study of the problem. By taking
into account Eqs. (15) and (16), we obtain

Z =
B2

A2
=

tan (φ − φB)
tan φ

= 1 − 2 sinφB

sin φB + sin (2φ − φB)
· (22)

Z = 0 for φ = φB, while the limiting value of Z for φ = φC is

ZC =
tan (φC − φB)

tanφC
= 1 − 2 sin φB

sinφB + sin (2 φC − φB)
· (23)
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When φ is between φB and φC , the value of Z reaches a maximum
given by

ZM =
1 − sin φB

1 + sin φB
, (24)

which is observed when φ corresponds to

φM =
π

4
+
φB

2
, (25)

where φM is always larger than φB. The value Z decreases for
φ > φM , after reaching its maximum ZM at φ = φM. Z = 0 for
φ = π/2. However, it is not necessary to study the behaviour of Z
for φC < φ ≤ π/2 since this range of φ is not physically possible.

As soon as φ increases from φB to φC, there are two possible
cases for φM and the corresponding trend in Z. If φC > φM , the
value of Z reaches the maximum ZM for φ = φM . For larger
values of φ, it decreases, reaching the limit value ZC for φ =
φC . If φC < φM, Z does not reach the maximum value given
by Eq. (24). In this case, the maximum value of Z corresponds
to ZC .

For each observed bulge, we also derive the mean value 〈Z〉
of its equatorial ellipticity. From Eq. (22),

〈Z〉 = 1
φC − φB

∫ φC

φB

Z(φ) dφ

= 1 − tanφB

φC − φB
ln

sin φC

cos (φC − φB) sin φB
· (26)

To perform a more exhaustive statistical analysis, we compute
for each observed bulge the probability P(Z) corresponding to
0 < Z < ZC by taking into account that φ can take any value in
the range φB ≤ φ ≤ φC with the same probability given by

P(φ) =
1

φC − φB
, (27)

hence P(Z) =
∑

P(φ) |dφ/dZ|, where the sum is defined over
all the φ values that solve Eq. (22). The probability P(Z) allows
us to compute some characteristic values of Z, such as the me-
dian value Z1/2. It is defined in such a way that the integrated
probability between Z = 0 and Z1/2 is equal to the integrated
probability between Z1/2 and ZC .

The distributions for the sample bulges as a function of their
maximum, mean, and median equatorial ellipticity are plotted in
Fig. 3.

Moreover, we define the confidence interval (Z1/6, Z5/6)
where the integrated probability is 67%. The integrated proba-
bilities between Z = 0 and Z1/6 and between Z = 0 and Z5/6 are
1/6 and 5/6, respectively. To this aim, we introduce three charac-
teristic values of φ in the range between φB and φC. According
to the probability P(φ) given in Eq. (27), they are

φ0
1/2 =

1
2
φC +

1
2
φB, (28)

φ0
1/6 =

1
6
φC +

5
6
φB, (29)

φ0
5/6 =

5
6
φC +

1
6
φB. (30)

We have seen that Z has a different behaviour for φC < φM

and φC > φM . We therefore separately study these two cases
to derive P(Z) and the corresponding distribution of equatorial
ellipticities.

Fig. 3. The distribution of the 148 sample bulges as a function of their
maximum (top panel), mean (middle panel), and median (bottom panel)
equatorial ellipticities plotted with a solid line. In each panel, the dotted
line refers to the distribution of the 115 sample bulges with φC > φM .

3.1. Bulges with φC < φM

If φC < φM , the value of Z monotonically increases from Z(φB) =
0 to ZC = Z(φC). There is only one value of φ corresponding to
any given value of Z. Thus the integrated probability P(Z) from
Z = 0 to Z = Z1/6, Z1/2, and Z5/6 is equal to the integration
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of P(φ) from φ = φB to φ = φ0
1/6, φ0

1/2, and φ0
5/6, respectively.

Consequently, the median value is

Z1/2 = Z(φ0
1/2) = 1 − 2 sin φB

sinφB + sin φC
, (31)

and the limits of the confidence interval are

Z1/6 = Z(φ0
1/6) = 1 − 2 sin φB

sinφB + sin
(

1
3φC +

2
3φB

) , (32)

and

Z5/6 = Z(φ0
5/6) = 1 − 2 sin φB

sinφB + sin
(

5
3φC − 2

3φB

) · (33)

In this case, the probability P(Z) is

P(Z) =
1

φC − φB

sinφB

(1 − Z)
√

(1 − Z)2 − sin2 φB (1 + Z)2

, (34)

which increases monotonically between

P(0) =
1

φC − φB
tanφB, (35)

and

P(ZC) =
1

φC − φB

1
4

[
sin φB + sin (2 φC − φB)

]2

sinφB cos (2 φC − φB)
· (36)

The probability P(Z) given in Eq. (34) strongly peaks at Z = ZC
in such a way that Z1/2 is close to ZC . For this reason, although
the right portion (Z1/2, Z5/6) of the confidence interval (Z1/6, Z5/6)
is not large, the confidence interval spans a large fraction of the
total range between 0 and ZC . This is the case for the bulge of
MCG -02-33-017 (Fig. 4, top panel). Using the mean 〈Z〉 and
median Z1/2 values to describe the equatorial ellipticity of these
bulges is a poor approximation.

3.2. Bulges with φC > φM

For φC > φM, Z monotonically increases from Z(φB) = 0 to
ZM = Z(φM) and then it monotonically decreases from ZM to
ZC = Z(φC). For 0 < Z < ZC , there is only one value of φ for
each value of Z, while for ZC < Z < ZM two values of φ cor-
respond to each value of Z. There is a discontinuity in P(Z) for
Z = ZC , which corresponds to the value φ′C =

π
2 − (φC − φB). We

assume that dZ/dφ = 0 for φ = φM and that the probability P(Z)
becomes infinity at Z = ZM . It is not possible to compute directly
the median value Z1/2 and confidence interval (Z1/6, Z5/6) from
P(φ) in Eq. (27). Therefore, we need to rewrite P(Z) as

P(Z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
φC − φB

sin φB

(1 − z)
√

(1 − z)2 − sin2 φB (1 + z)2

0 ≤ Z < ZC ,

2
φC − φB

sin φB

(1 − z)
√

(1 − z)2 − sin2 φB (1 + z)2

ZC ≤ Z ≤ ZM .

(37)

There are different values for Z1/6, Z1/2, and Z5/6 depending on
whether φ0

1/2 is smaller or greater than φ′C , which corresponds to
the discontinuity in P(Z).

Fig. 4. PDF of the equatorial ellipticity for three sample bulges. MCG -
02-33-017 (top panel) hosts a bulge with φC < φM . NGC 1107 (middle
panel) hosts a bulge with φC > φM and φ0

1/2 < φ′C . NGC 4789 (bot-
tom panel) hosts a bulge with φC > φM and φ0

1/2 > φ′C . In each panel,
the vertical line shows the median Z1/2 value, the arrow corresponds to
the maximum value of Z, and the hatched area marks the confidence
interval (Z1/6,Z5/6) corresponding to 67% probability.

For φ0
1/2 < φ′C , the values of Z1/2 and Z1/6 are given by

Eqs. (31) and (32), respectively. However, there are two possi-
ble values for Z5/6 depending on the value of φ0

5/6. If φ0
5/6 < φ′C ,
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then Z5/6 is given by Eq. (33). If φ0
5/6 > φ′C the corresponding

values of Z are on the right-hand side of the discontinuity (i.e.,
two values of Z correspond to a given value of φ > φ′C). In this
case,

Z5/6 = 1 − 2 sin φB

sinφB + cos φC−φB

6

, (38)

which corresponds to Z(φ5/6) with φ5/6 = π/4−φC/12+7 φB/12.
For φ0

1/2 > φ
′
C , the value of Z1/2 is given by

Z1/2 = 1 − 2 sin φB

sinφB + cos φC−φB

2

, (39)

and corresponds to Z(φ1/2) with φ1/2 = π/2 − φC/2 + 3 φB/2.
Likewise, Z5/6 is given by Eq. (38). But, for Z1/6 we have two
possibilities according to the value of φ0

1/6. If φ0
1/6 < φ′C then

Z1/6 is given by Eq. (32). If φ0
1/6 > φ′C the corresponding values

of Z are on the right-hand side of the discontinuity, and we find
that

Z1/6 = 1 − 2 sin φB

sinφB + cos 5 (φC−φB)
6

, (40)

which corresponds to Z(φ1/6) with φ1/6 = π/4 − 5 φC/12 +
11 φB/12.

For φC > φM, the probability P(Z) in Eq. (37) peaks strongly
at ZM and therefore the median Z1/2 and maximum ZM values
of the equatorial ellipticity are very close and the confidence in-
terval (Z1/6, Z5/6) is narrow. This is the case for the bulges of
NGC 1107 (Fig. 4, middle panel) and NGC 4789 (Fig. 4, bottom
panel). For these types of bulges, we conclude that the statis-
tics we have presented here are representative of their intrinsic
equatorial ellipticity.

3.3. Statistics of the equatorial ellipticity of bulges

The distribution of the maximum equatorial ellipticity (corre-
sponding to either ZC for bulges with φC < φM or ZM for bulges
with φC > φM) peaks at ZM > 0.9 (Fig. 3, top panel). These are
nearly circular bulges (B/A = 0.95). However, we conclude that
a large fraction of the sample bulges are strong candidates to be
triaxial because 41% of them have ZM < 0.80 (B/A < 0.89).
This result agrees with our previous finding in Paper I and with
the analysis of the distribution of mean (Fig. 3, middle panel) and
median (Fig. 3, bottom panel) ellipticities. We find that 64% and
53% of our bulges have 〈Z〉 < 0.8 and Z1/2 < 0.8, respectively.
The mean values of 〈Z〉 and Z1/2 are 0.68 and 0.73, respectively.

The width of the confidence interval (Z1/6, Z5/6) correspond-
ing to a 67% probability is related to the accuracy of the Z mea-
surement. The narrowest confidence intervals are found for
bulges with φC → π/2 and φB → 0. This implies that φ′C → φB

and ZC > ZM . For these bulges, the discontinuity in P(Z) is al-
most negligible. The case with φC = π/2 and φB = 0 corresponds
either to spherical bulges (i.e., e = 0) or to bulges with a circu-
lar equatorial section (i.e., tan 2δ = 0). Consequently, the bulges
with B ≈ A are among those characterized by narrower confi-
dence intervals and more accurate determinations of Z. We can
select all sample objects for which the Z measurement is only
slightly uncertain. They are the 115 galaxies with φC > φM. The
distribution of these selected bulges as a function of their ZM ,
〈Z〉, and Z1/2 is also plotted in Fig. 3. The fraction of bulges
with ZM < 0.8 is 33%. It is significantly smaller than the 41%
found for the complete sample, because the selected sample is

biased toward bulges with B ≈ A including all the bulges with
a circular (or nearly circular) equatorial section. The fraction of
selected bulges with 〈Z〉 < 0.8 and Z1/2 < 0.8 is 55% and 43%,
respectively.

4. Intrinsic flattening of bulges

The axial ratio C/A usually describes the intrinsic flattening F
of a triaxial ellipsoid if A ≥ B ≥ C. Since we have no constraints
on the lengths A, B, and C, we redefine the flattening as

F(φ) =
C2

R2
=

2C2

A2 + B2
, (41)

by using the lengths C and R of the polar semi-axis and the mean
equatorial radius given by Eqs. (11) and (20), respectively, such
that

F(φ) = Fθ
cot 2φ − cot 2φC

cot φB − cot 2φ
= Fθ

sin φB

sin 2φC

sin (2φC − 2φ)
sin (2φ − φB)

, (42)

where

Fθ =
2 cos2 θ

sin2 θ
, (43)

accounts for the effect of inclination. The angle θ also enters into
the definition of the two angles φB and φC in Eqs. (12) and (13),
respectively. Adopting a squared quantity for F allows us to per-
form successfully an analytic study of the problem, as completed
for the equatorial ellipticity Z in Eq. (22).

Since dF(φ)/dφ < 0, the function F(φ) monotonically de-
creases with a maximum FM at φ = φB given by

FM = Fθ
sin (2 φC − 2 φB)

sin 2 φC
· (44)

If φ increases from φB to φC , the value of F(φ) decreases to zero
at φ = φC . According to Eq. (44), for FM < 1 the triaxial el-
lipsoids are oblate, with some of them being partially oblate and
others completely oblate. For FM > 1, the triaxial ellipsoids may
also be partially prolate and in some extreme cases completely
prolate.

From Eq. (42), we compute the mean value 〈F〉 of the intrin-
sic flattening to be

〈F〉 = 1
φC − φB

∫ φC

φB

F(φ) dφ

= Fθ
sin φB

sin 2 φC

⎡⎢⎢⎢⎢⎢⎣ sin (2 φC − φB)
2 (φC − φB)

ln

(
sin (2 φC − φB)

sin φB

)

− cos (2 φC − φB)

⎤⎥⎥⎥⎥⎥⎦. (45)

Since F(φ) is a monotonic function (i.e., each value of F corre-
sponds to only one value of φ), the integrated probability P(F)
between F(φC) = 0 and some characteristic value F∗ = F(φ∗)
is equal to the integral of P(φ) between φ∗ and φC . It is then
straightforward to compute the median value F1/2 of the in-
trinsic flattening that corresponds to the median value φ0

1/2 =

(φC + φB)/2

F1/2 = Fθ
sin φB

sin (2 φC)
sin (φC − φB)

sin φC
· (46)

As demonstrated for the equatorial ellipticity, for the flattening
we can also define a confidence interval (F1/6, F5/6) where the
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integrated probability is 67%. The integrated probabilities be-
tween F = 0 and F1/6 and between F = 0 and F5/6 are indeed
1/6 and 5/6, respectively. We have

F1/6 = Fθ
sin φB

sin (2 φC)

sin
(

1
3φC − 1

3φB

)
sin

(
5
3φC − 2

3φB

) , (47)

which corresponds to φ0
1/6 given in Eq. (29), and

F5/6 = Fθ
sin φB

sin (2 φC)

sin
(

5
3φC − 5

3φB

)
sin

(
1
3φC +

2
3φB

) , (48)

which corresponds to φ0
5/6 given in Eq. (30). The distribution of

the sample bulges as a function of their maximum, mean, and
median intrinsic flattening is plotted in Fig. 5.

It is possible to perform a more exhaustive statistical analysis
by defining the probability P(F) of having a flattening F as

P(F) = k0
1

A0F2 + B0F +C0
, (49)

where

k0 =
cos2 θ sin (2φC − φB)

sin2 θ (φC − φB) sin 2φC sin φB

, (50)

A0 =
1

sin2 φB

, (51)

B0 =
4 cos2 θ cos (2φC − φB)

sin2 θ sin 2φC sinφB

, (52)

C0 =
4 cos4θ

sin4 θ sin2 2φC

, (53)

(54)

where k0, A0, and C0 are always positive, while B0 > 0 for 2φC−
φB < π/2 (φC < φM) and B0 < 0 for 2φC − φB > π/2 (φC > φM).
All these quantities can be computed directly for each observed
bulge, since they indeed depend only on the measured values
of a, b, δ, and θ through the angles φB and φC .

In Sect. 3.1, we found that the confidence interval (Z1/6, Z5/6)
of equatorial ellipticity for a bulge with φC < φM is wide. For this
reason, the median Z1/2 and mean 〈Z〉 values are not representa-
tive of the equatorial ellipticity of the bulge. The same is true for
(F1/6, F5/6) because the probability function P(F) peaks at F = 0
and slowly decreases as soon as F increases. As a consequence,
the median F1/2 and mean 〈F〉 values are not representative of
the intrinsic flattening of the bulge. This is the case for the bulge
of MCG -02-33-017 (Fig. 6, left panels).

In contrast, if φC > φM then B0 < 0, and the probability
function P(F) peaks at the most probable value

FMP = −1
2

B0

A0
, (55)

and quickly decreases to

P(0) =
k0

C0
, (56)

and to zero for F < FMP and F > FMP, respectively. The con-
fidence interval (F1/6, F5/6) is narrow. The median F1/2, mean
〈F〉, and the most probable value FMP are close to each other
and all of them are representative of the intrinsic flattening. This
is the case for the bulge of NGC 4789 (Fig. 6, right panels).

Fig. 5. The distribution of the 148 sample bulges as a function of their
maximum (top panel), mean (middle panel), and median (bottom panel)
intrinsic flattening, plotted with a solid line. In each panel, the dotted
line refers to the distribution of the 115 sample bulges with φC > φM .

4.1. Statistics of the intrinsic flattening of bulges

The distribution of the maximum intrinsic flattening (Fig. 5, top
panel) shows that 12% of the sample bulges have FM < 1 (i.e.,
they are either completely or partially oblate triaxial ellipsoids).
Judging by FM, the majority of sample bulges could be highly
elongated along the polar axis. However, these highly elongated
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Fig. 6. The intrinsic flattening as a function of the angle φ (top panels) and its PDF (bottom panels) for two sample bulges. MCG -02-33-017 (left
panels) and NGC 4789 (right panels) host a bulge with B0 > 0 and B0 < 0, respectively. In the bottom panels, the vertical line shows the median
F1/2 value and the hatched area marks the confidence interval (F1/6 , F5/6) corresponding to 67% of probability.

bulges are not common. After excluding from the complete sam-
ple the bulges with FM < 1, only 19% (18% if we consider only
the selected sample of 115 bulges) of the remaining bulges have
a probability greater than 50% of having an intrinsic flattening
F > 1 and no bulges have a greater than 90% probability of hav-
ing F > 1 (Fig. 7). This agrees with the results based on the
analysis of the distribution of the mean (Fig. 5, middle panel)
and median (Fig. 5, bottom panel) intrinsic flattening. We find
that 78% of the sample bulges have 〈F〉 < 1, and 83% have
F1/2 < 1. They are oblate triaxial ellipsoids.

The large number of sample bulges with FM > 1 with respect
to those that are actually elongated along the polar axis is due
to a projection effect of the triaxial ellipsoids. For any φ, the
contribution of inclination θ to the value of F is given by Fθ

as defined in Eq. (43). However, the intrinsic flattening scales
with Fθ, whereas the probability P(F) scales with 1/Fθ. Thus,
the probability of having large Fθ values (and large FM values) is
very small. For instance, the probability of having the maximum
FM value given by Eq. (44) is

P(FM) =
1

2 (φC − φB)
1
Fθ

sin φB sin 2 φC

sin (2 φC − φB)
· (57)

We conclude that FM is not a good proxy for the intrinsic flat-
tening of a bulge, although ZM is a good proxy for equatorial
ellipticity.

The distribution of the selected bulges with φC > φM as a
function of their FM , 〈F〉, and F1/2 is also plotted in Fig. 5. The
fraction of oblate triaxial ellipsoids is rather similar to that of
the complete sample, being 10%, 78%, and 83% if we consider
bulges with FM < 1, 〈F〉 < 1, and F1/2 < 1, respectively. The
mean values of 〈F〉 and F1/2 are 0.88 and 0.71, respectively, for
the complete sample, and 0.86 and 0.75, respectively, for the
selected sample.

5. Intrinsic shape of bulges

The distributions of the equatorial ellipticity and intrinsic flatten-
ing of bulges have been studied in Sects. 3 and 4 as two indepen-
dent and not correlated statistics. It is possible to find a relation
between them from Eqs. (8) and (41) to be√

E2 − sin2 φB =

F
Fθ

sin 2φC + sin φB cos (2φC − φB)

sin (2 φC − φB)
, (58)

Fig. 7. Number of sample bulges which could have an intrinsic flatten-
ing F > 1 as a function of the probability that this happens. Bulges with
F < 1 (i.e., oblate triaxial ellipsoids) have been not taken into account.

which helps to constrain the intrinsic shape of an observed bulge
with the help of the known characteristic angles φB and φC ,
which depend only on the measured values of a, b, δ, and θ.
Equation (58) can be rewritten as a function of the axial ratios
B/A and C/A as

2 sin (2φC)
Fθ

C2

A2
= sin (2φC − φB)

×
√(

1 − B2

A2

)2

− sin2 φB

(
1 +

B2

A2

)2

− sin φB cos (2φC − φB)

(
1 +

B2

A2

)2

. (59)

Since B/A and C/A are both functions of the same variable φ,
their probabilities are equivalent (i.e., for a given value of B/A
with probability P(B/A), the corresponding value of C/A ob-
tained by Eq. (59) has a probability P(C/A) = P(B/A)). This
allows us to obtain the range of possible values of B/A and C/A
for an observed bulge and to constrain its most probable intrinsic
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Fig. 8. Relation between the axial ratios B/A and C/A for two sample
bulges. MCG -02-33-017 (upper panel) hosts a bulge with φM < φC , and
NGC 4789 (lower panel) hosts a bulge with φM > φC . The probability
associated with each value of B/A and its corresponding value of C/A
(thick solid line), the value of C/A as a function of B/A (dotted line), the
maximum value of the equatorial ellipticity (arrow), the median values
of B/A (vertical thin solid line) and C/A (horizontal thin solid line), and
the confidence region enclosing all the possible values of B/A and C/A
within a 67% probability (hatched area) are shown in both panels.

shape by adopting the probabilities P(Z) and P(F) derived in
Sects. 3 and 4, respectively.

An example of the application of Eq. (59) to two bulges of
our sample is shown in Fig. 8, where the hatched area marks the
confidence region enclosing 67% of the total probability for all
the possible values of B/A and C/A. The intrinsic shape of bulges
with φC < φM is less constrained, since the median values of
B/A and C/A are less representative of their actual values. This
is the case for the bulge of MCG -02-33-017 (Fig. 8, top panel).
In contrast, the intrinsic shape of bulges with φC > φM is more
tightly constrained. This is the case for the bulge of NGC 4789
(Fig. 8, bottom panel).

5.1. Statistics of the intrinsic shape of bulges

Following the above prescriptions, we calculated the axial ratios
B/A and C/A and their confidence intervals for all the sample
bulges. There is no correlation between B/A and C/A (Fig. 9),
unless only bulges with φC > φM are taken into account. The

Fig. 9. The intrinsic shape of the 148 sample bulges. The axial ratios
with 50% probability are plotted for each bulge. Diamonds refer to the
115 sample bulges with φC > φM .

range of C/A values corresponding to a given B/A decreases
as B/A varies from 1.0 to 0.5, giving a triangular shape to the
distribution of allowed axial ratios. Circular and nearly circular
bulges can have either an axisymmetric oblate or an axisymmet-
ric prolate or a spherical shape. More elliptical bulges are more
elongated along their polar axis.

We derived the triaxiality parameter, as defined by Franx
et al. (1991), for the 115 sample bulges with a well-constrained
intrinsic shape (i.e., those with φC > φM)

T =
1 −

(
B̂
Â

)2

1 −
(

Ĉ
Â

)2
, (60)

where Â, B̂, and Ĉ are the lengths of the longest, intermedi-
ate, and shortest semi-axes of the triaxial ellipsoid, respectively
(i.e., Â ≥ B̂ ≥ Ĉ). This notation is different with respect to that
we adopted in the previous sections. Oblate triaxial (or axisym-
metric) ellipsoids can be flattened along either the y-axis on the
equatorial plane of the galaxy or the polar axis. Prolate triaxial
(or axisymmetric) ellipsoids can be elongated along either the
x-axis on the equatorial plane of the galaxy or the polar axis.
Therefore, prolate bulges either lie on the disk plane (and are
similar to bars) or stick out from the disk (and are elongated per-
pendicularly to it). This change of notation is needed to compare
our results with those available in literature.

The triaxiality parameter for bulges with φC > φM is char-
acterized by a bimodal distribution (Fig. 10) with a minimum at
T = 0.55 and two maxima at T = 0.05 and T = 0.85, respec-
tively. According to this distribution, 65% ± 4% of the selected
bulges are oblate triaxial (or axisymmetric) ellipsoids (T < 0.55)
and the remaining 35% ± 4% are prolate (or axisymmetric) tri-
axial ellipsoids (T ≥ 0.55). The uncertainties in the percentages
were estimated by means of Monte Carlo simulations. Since T is
a function of φ, we generated 10 000 random values of φ in the
range between φB and φC for each bulge and derived the corre-
sponding distributions of B/A and C/A according to their PDFs.
From B/A and C/A, we calculated the distribution of T and its
standard deviation, which we adopted as its uncertainty.

We investigated the cause of this bimodality by separating
the bulges according to their Sérsic index (n) and bulge-to-total
luminosity ratio (B/T ). Both quantities were derived for each
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Fig. 10. Distribution of the triaxiality parameter T for the 115 bulges
with φC > φM (continuous line). The distributions of bulges with Sérsic
index n ≤ 2 (dotted line) and n > 2 (dashed line) are shown in the upper
panel. The distributions of bulges of galaxies with bulge-to-total ratio
B/T ≤ 0.3 (dotted line) and B/T > 0.3 (dashed line) are shown in the
lower panel.

sample bulge in Paper I. The Sérsic index is a shape parameter
describing the curvature of the surface-brightness profile of the
bulge. A profile with n = 1 corresponds to an exponential law,
while a profile with n = 4 corresponds to an r1/4 law. The bi-
modality is driven by bulges with Sérsic index n > 2 (Fig. 10, up-
per panel), or alternatively, by bulges of galaxies with B/T > 0.3
(Fig. 10, lower panel). The sample of bulges with φC > φM and
the two subsamples of bulges with n > 2 and bulges in galaxies
with B/T > 0.3 are characterized by the same distribution of T ,
as confirmed at high confidence level (>99%) by a Kolmogorov-
Smirnov test. We find that 66% ± 4% of bulges with n > 2 have
T < 0.55. Their number decreases as T increases from 0 to 0.55.
The remaining bulges have T > 0.55 and their number increases
as T ranges from 0.55 to 1. A similar distribution is observed for
the bulges of galaxies with B/T > 0.3. We find that 67% ± 4%
of them host a bulge with T < 0.55. The distribution of the triax-
iality parameter of bulges of galaxies with B/T ≤ 0.3 is almost
constant with a peak at T = 0.05. This is also true for the bulges
with n ≤ 2, although to a lesser degree.

The two subsamples of bulges with n ≤ 2 and n > 2 are dif-
ferent, as confirmed by a Kolmogorov-Smirnov test (at the 99%
confidence level). In particular, the fraction of oblate axisym-
metric (or nearly axisymmetric) bulges (T < 0.1) is remarkably
higher for n ≤ 2 (27% ± 4%) than for n > 2 (14% ± 3%). The
fraction of triaxial bulges (0.1 ≤ T ≤ 0.9) is compatible within
the errors for n ≤ 2 (71% ± 5%) and for n > 2 (76% ± 3%).
The fraction of prolate axisymmetric (or nearly axisymmetric)
bulges (T > 0.9) for n ≤ 2 is 2% ± 2%, but 11%± 3% for n > 2.

The two subsamples of bulges of galaxies with B/T > 0.3
and B/T ≤ 0.3 differ too, as confirmed by a Kolmogorov-
Smirnov test (99% confidence level). The fraction of oblate ax-
isymmetric bulges (T < 0.1) is significantly higher for bulges
of galaxies with B/T ≤ 0.3 (22% ± 4%) than for B/T > 0.3
(16%±2%). The fraction of triaxial bulges (0.1 ≤ T ≤ 0.9) is sig-
nificantly lower for B/T ≤ 0.3 (67% ± 4%) than for B/T > 0.3
(78% ± 3%). A few prolate bulges (T > 0.9) are observed for
B/T ≤ 0.3 (11%± 3%) and B/T > 0.3 (6%± 2%). The distribu-
tion of bulges with n ≤ 2 and bulges of galaxies with B/T ≤ 0.3
appears to be the same at a high confidence level (>99%) as con-
firmed by a Kolmogorov-Smirnov test.

Bulges with φC > φM can be divided into two classes: those
with n ≤ 2 (or B/T ≤ 0.3) and those with n > 2 (or B/T > 0.3).
About 70% of bulges with n ≤ 2 are hosted by galaxies with
B/T ≤ 0.3. The same is true for bulges with n > 2, which are
hosted mostly by galaxies with B/T > 0.3. This agrees with the
correlation between n and B/T .

To understand whether the intrinsic shape is correlated with
some of the bulge properties we measured in Paper I, we plot-
ted the axial ratios C/A and B/A and the triaxiality of the sam-
ple bulges with φC > φM as a function of their Sérsic index,
J-band luminosity, and central velocity dispersion (Fig. 11). As
we found in Paper I for the intrinsic equatorial ellipticity, there
are no statistically significant correlations between the bulge
shape and the bulge Sérsic index, luminosity, or velocity dis-
persion as pointed out by the low Spearman rank correlation co-
efficient (Fig. 11). However, this could be a selection effect since
the sample of observed bulges spans a limited range of Hubble
types (S0–Sb).

5.2. The influence of nuclear bars on the intrinsic shape
of bulges

Our sample galaxies were selected not to host large-scale bars.
We checked for their presence in Paper I by a visual inspection
of both the original image and the residual image we obtained
after subtracting the best-fitting photometric model. However,
these selection criteria did not account for the presence of unre-
solved nuclear bars. Nuclear bars are more elongated than their
host bulges and have random orientations, therefore they could
affect the measurement of the structural parameters of bulges and
consequently their intrinsic shape.

In Paper I, we compiled a set of 1000 artificial images with
a Sérsic bulge, an exponential disk, and a Ferrers nuclear bar
to study the effects of the bar on the measurements of the pho-
tometric parameters of bulge and disk. The mean errors in the
fitted axial ratio and position angle of the bulge (〈Δqb〉, 〈ΔPAb〉)
and disk (〈Δqd〉, 〈ΔPAd〉) and their standard deviations (δΔqb,
δΔPAb, δΔqd, δΔPAd) are given in Table 2 of Paper I.

In the present paper, we tested whether including a nuclear
bar affects the T distribution. For each galaxy, we randomly gen-
erated a series of 1000 values of qb, qd, PAb, and PAd. To assess
whether the bulges appear elongated and twisted with respect
to the disk due to the presence of a nuclear bar, we assumed
that the axial ratios were normally distributed around the values
qb + 〈Δqb〉 and qd + 〈Δqd〉 with standard deviations δΔqb and
δΔqd, respectively, and that the position angles were normally
distributed around the values PAb±〈ΔPAb〉 and PAd±〈Δqd〉with
standard deviations δΔPAb and δΔPAd, respectively. We chose
the PA values that corresponded to the smallest δ with respect to
the observed one.

If we assume that all the artificial bulges host a nuclear bar,
we still obtain a bimodal distribution of T (Fig. 12). However,
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Fig. 11. The bulge axial ratios C/A and B/A and
the triaxiality T as a function of the bulge Sérsic
parameter n, J-band luminosity Lb, and cen-
tral velocity dispersion σ0. Only the 115 bulges
with φC > φM are represented. The Spearman
rank correlation coefficient (ρ) is shown in the
upper right corner of each panel.

the fraction of oblate axisymmetric (or nearly axisymmetric)
bulges (T < 0.1) is higher (23% ± 2%) than the observed
18% ± 3%. For a more realistic fraction of galaxies hosting
a nuclear bar (i.e, 30%, see Laine et al. 2002; Erwin 2004),
the resulting distribution of T is consistent within errors with
the distribution derived in Sect. 5.1 (Fig. 12). We found that
20% ± 2%, 71% ± 3%, and 9% ± 2% of the sample bulges are
oblate axisymmetric (T < 0.1), triaxial (0.1 ≤ T ≤ 0.9), and
prolate axisymmetric (T > 0.9), respectively, with respect to the
18% ± 3%, 74% ± 4%, and 8% ± 2% previously found. In ad-
dition, we have also tested the effects of not considering a dis-
tribution of bar parameters but only the stronger bar included in
the simulations (0.8 × re, qb = 0.2, and Lbar = 0.02 × Ltot), i.e.,
the worst-case scenario. If we assume that 30% of our galax-
ies host this kind of nuclear bar the results change strongly, and
we find that only 56% ± 4% of the sample bulges are triaxial
(0.1 ≤ T ≤ 0.9) with respect to the 74% ± 4% previously found.
If we were to assume that all galaxies host this kind of nuclear
bar, the fraction of triaxial bulges would be 30% ± 3%.

The measured ellipticity and bulge misalignment with the
disk of the artificial galaxies without a nuclear bar are smaller
than the actual values measured for the sample bulges. This sets
an upper limit to the axisymmetry of the bulges.

6. Conclusions

We have developed a method to derive the intrinsic shape of
bulges. It is based upon the geometrical relationships between

the observed and intrinsic shapes of bulges and their surround-
ing disks. We have assumed that bulges are triaxial ellipsoids
with semi-axes of length A and B in the equatorial plane and C
along the polar axis. The bulge shares the same center and po-
lar axis as its disk, which is circular and lies on the equatorial
plane of the bulge. The intrinsic shape of the bulge is recovered
from photometric data only. It is given by the lengths a and b
of the two semi-major axes of the ellipse, corresponding to the
two-dimensional projection of the bulge, the twist angle δ be-
tween the bulge major axis and the galaxy line of nodes, and
the galaxy inclination θ. The method is completely independent
of the studied class of objects, and can be applied whenever a
triaxial ellipsoid embedded in (or embedding) an axisymmetric
component is considered.

We have analyzed the magnitude-limited sample of 148 un-
barred S0–Sb galaxies, for which we have derived (Paper I) the
structural parameters of bulges and disks by performing a de-
tailed photometric decomposition of their near-infrared surface-
brightness distribution.

By studying the equatorial ellipticity Z = B2/A2, we found
that there is a combination of characteristic angles for which
the intrinsic shape can be more confidently constrained. This al-
lowed us to select a qualified subsample of 115 galaxies with
a narrow confidence interval (corresponding to 67% of proba-
bility) of Z. For example, bulges with B ≈ A are among those
characterized by the narrower confidence interval and the most
reliable determination of Z. The fraction of selected bulges with
a maximum equatorial ellipticity ZM < 0.80 (B/A < 0.89), mean
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Fig. 12. Distribution of the triaxiality parameter T for the original sam-
ple of 115 bulges with φC > φM (continuous line), for a sample with
30% of bulges with a nuclear bar (dashed line) and for a 100% fraction
of galaxies hosting a nuclear bar (dotted line).

equatorial ellipticity 〈Z〉 < 0.80, and a median equatorial ellip-
ticity Z1/2 < 0.80 is 33%, 55%, and 43%, respectively. We con-
clude that not all the selected bulges have a circular (or nearly
circular) section, but a significant fraction of them is character-
ized by an elliptical section. These bulges are strong candidates
to be triaxial. In spite of the lower fraction of bulges with a max-
imum equatorial ellipticity smaller than 0.8, ZM is a good proxy
for the equatorial ellipticity because the selected sample contains
all the bulges with B ≈ A.

The analysis of the intrinsic flattening F = 2 C2/(A2 + B2)
shows that only a few bulges of the selected sample are pro-
late triaxial ellipsoids. Only 22% and 17% have a mean intrinsic
flattening 〈F〉 > 1 or a median intrinsic flattening F1/2 > 1,
respectively. The fraction rises to 90% when a maximum intrin-
sic flattening FM > 1 is considered. However, this is due to the
projection effect of triaxial ellipsoids. The fraction of bulges ac-
tually elongated along the polar axis is indeed very small: only
18% of bulges with FM > 1 have a probability greater than 50%
of having an intrinsic flattening F > 1, and there are no bulges
with more than a 90% probability of having F > 1. Thus, FM is
not a good proxy for the intrinsic flattening.

After considering the equatorial ellipticity and intrinsic flat-
tening as independent parameters, we derived the relation among
them to calculate for each sample bulge both axial ratios, B/A
and C/A, and their confidence intervals. As already found for
Z and F, the axial ratios are more tightly constrained for the se-
lected sample of 115 bulges. We derived the triaxiality parameter
defined by Franx et al. (1991) for all of them, finding that it fol-
lows a bimodal distribution with a minimum at T = 0.55 and two
maxima at T = 0.05 (corresponding to oblate axisymmetric or
nearly axisymmetric ellipsoids) and T = 0.85 (strongly prolate
triaxial ellipsoids), respectively. According to this distribution,
65% of the selected bulges are oblate triaxial (or axisymmetric)

ellipsoids (T < 0.55) and the remaining 35% are prolate triax-
ial (or axisymmetric) ellipsoids (T > 0.55). This bimodality is
driven by bulges with Sérsic index n > 2 or alternatively by
bulges of galaxies with a bulge-to-total ratio B/T > 0.3. Bulges
with n ≤ 2 and bulges of galaxies with B/T ≤ 0.3 follow a sim-
ilar distribution, which differs from that of bulges with n > 2
and bulges of galaxies with B/T > 0.3. In particular, the sam-
ple of bulges with n ≤ 2 and the sample of bulges of galaxies
with B/T ≤ 0.3 show a larger fraction of oblate axisymmetric
(or nearly axisymmetric) bulges (T < 0.1), a smaller fraction of
triaxial bulges (0.1 ≤ T ≤ 0.9), and fewer prolate axisymmetric
(or nearly axisymmetric) bulges (T > 0.9) with respect to the
corresponding sample of bulges with n > 2 and the sample of
bulges of galaxies with B/T > 0.3, respectively.

The different distributions of the intrinsic shapes of bulges
according to their Sérsic index indicate that there are two bulge
populations with different structural properties: the classical
bulges, which are characterized by n > 2 and are similar to
low-luminosity elliptical galaxies, and pseudobulges, with n ≤
2 and characterized by disk-like properties (see Kormendy &
Kennicutt 2004, for a review). The correlation between the in-
trinsic shape of bulges with n ≤ 2 and those in galaxies with
B/T ≤ 0.3 and between bulges with n > 2 and those in galaxies
with B/T > 0.3 agrees with the correlation between the bulge
Sérsic index and bulge-to-total ratio of the host galaxy, as found
by Drory & Fisher (2007) and Fisher & Drory (2008).

No statistically significant correlations have been found be-
tween the intrinsic shape of bulges and either the luminosity or
velocity dispersion of the bulge. However, this could be a se-
lection effect since the sample bulges span a limited range of
Hubble types (S0–Sb).

The observed bimodal distribution of the triaxiality param-
eter can be compared to the properties predicted by numerical
simulations of spheroid formation. Cox et al. (2006) studied the
structure of spheroidal remnants formed by major dissipationless
and dissipational mergers of disk galaxies. Dissipationless rem-
nants are triaxial with a tendency to be more prolate, whereas
dissipational remnants are triaxial and tend to be much closer to
oblate. This result is consistent with previous studies of dissipa-
tionless and dissipational mergers (e.g., Barnes 1992; Hernquist
1992; Springel 2000; González-García & Balcells 2005). In ad-
dition, Hopkins et al. (2010) used semi-empirical models to pre-
dict galaxy merger rates and contributions to bulge growth as
functions of merger mass, redshift, and mass ratio. They found
that high B/T systems tend to form in major mergers, whereas
low B/T systems tend to form from minor mergers. In this
framework, bulges with n ≤ 2, which shows a high fraction of
oblate axisymmetric (or nearly axisymmetric) shapes and have
B/T ≤ 0.3, could be the result of dissipational minor mergers. A
more complex scenario including both major dissipational and
dissipationless mergers is required to explain the variety of in-
trinsic shapes found for bulges with n > 2 and B/T > 0.3.

On the other hand, depending on the initial conditions (see
Vietri 1990, and references therein), the final shape of early pro-
togalaxies may also be triaxial. However, high-resolution numer-
ical simulations in a cosmologically motivated framework that
resolves the bulge structure are still lacking. The comparison of
a larger sample of bulges with a measured intrinsic shape and
covering the entire Hubble sequence with these numerical ex-
periments is the next logical step in addressing the issue of bulge
formation.
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