Issue |
A&A
Volume 520, September-October 2010
|
|
---|---|---|
Article Number | A88 | |
Number of page(s) | 12 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/200913750 | |
Published online | 08 October 2010 |
Realistic model atmosphere and revised abundances of the coolest Ap star HD 101065 *,**
1
Institute of Astrophysics, Georg-August-University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany e-mail: denis.shulyak@gmail.com
2
Institute of Astronomy, Vienna University, Türkenschanzstrasse 17, 1180 Vienna, Austria
3
Institute of Astronomy, Russian Academy of Science, Pyatnitskaya 48, 119017 Moscow, Russia
4
Institute of Spectroscopy, Russian Academy of Science, Physicheskaya 5, 142190 Troitsk, Russia
5
Department of Physics and Astronomy, Uppsala University, Box 515, 751 20 Uppsala, Sweden
Received:
26
November
2009
Accepted:
31
March
2010
Aims. Among the known Ap stars, HD 101065 is probably one of the most interesting objects, demonstrating very rich spectra of rare-earth elements (REE). Strongly peculiar photometric parameters of this star can not be fully reproduced by any modern theoretical calculations, even those accounting for realistic chemistry of its atmosphere. In this study we investigate a role of missing REE line opacity and construct a self-consistent atmospheric model based on accurate abundance and chemical stratification analysis.
Methods. We employed the LLmodels stellar model atmosphere code together with DDAFit and Synthmag software packages to derive homogeneous and stratified abundances for 52 chemical elements and to construct a self-consistent model of HD 101065 atmosphere. The opacity in REE lines is accounted for in details, by using up-to-date extensive theoretical calculations.
Results. We show that REE elements play a key role in the radiative energy balance in the atmosphere of HD 101065, leading to the strong suppression of the Balmer jump and energy redistribution very different from that of normal stars. Introducing new line lists of REEs allowed us to reproduce, for the first time, spectral energy distribution of HD 101065 and achieve a better agreement between the unusually small observed Strömgren c1 index and the model predictions. Using combined photometric and spectroscopic approaches and based on the iterative procedure of abundance and stratification analysis we find effective temperature of HD 101065 to be Teff = 6400 K.
Key words: stars: chemically peculiar / stars: atmospheres / stars: individual: HD 101065
Based on observations collected at the European Southern Observatory (Paranal, La Silla) and on data retrieved from the ESO Science Archive.
Figures 4–7, 9 and Tables 3, 4 are only available in electronic form at http://www.aanda.org
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.