Issue |
A&A
Volume 519, September 2010
|
|
---|---|---|
Article Number | A47 | |
Number of page(s) | 20 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201014387 | |
Published online | 10 September 2010 |
Self-consistent nonspherical isothermal halos embedding zero-thickness disks*
1
Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK e-mail: amorisco@ast.cam.ac.uk
2
Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy e-mail: giuseppe.bertin@unimi.it
Received:
9
March
2010
Accepted:
8
May
2010
Context. That the rotation curves of spiral galaxies are generally flat in the outer regions is commonly considered an indication that galaxy disks are embedded in quasi-isothermal halos. In practice, disk-halo decompositions of galaxy rotation curves are performed in a parametric way by modeling the halo force contribution by means of expressions that approximately describe the properties of the regular isothermal sphere or other spherical density distributions suggested by cosmological simulations.
Aims. In this paper we construct self-consistent models of nonspherical isothermal halos embedding a zero-thickness disk, by assuming that the halo distribution function is a Maxwellian. The general method developed here can also be used to study the properties of other physically-based choices for the halo distribution function and to the case of a disk accompanied by a bulge.
Methods. The construction was performed by means of an iterative procedure that generalizes a method introduced in the past to construct spheroidal models of rotating elliptical galaxies. In a preliminary investigation, which set the empirical framework to study the self-consistent models developed in this paper, we note the existence of a fine tuning between the scalelengths and h, respectively characterizing the rise of the rotation curve and the luminosity profile of the disk, which surprisingly applies to both high surface brightness and low surface brightness galaxies in similar ways. We show that this empirical correlation identifies a much stronger conspiracy than the one required by the smoothness and flatness of the rotation curve and often referred to as disk-halo conspiracy.
Results. As a natural property, the self-consistent models presented in this paper are found to be characterized by smooth and flat rotation curves for very different disk-to-halo mass ratios, hence suggesting that conspiracy is not as dramatic as often imagined. For a typical, observed rotation curve, with asymptotically flat rotation curve at (the precise value of which can also be treated as a free parameter), and a typical density profile of the disk, the relevant self-consistent models are characterized by two dimensionless parameters, which correspond to the dimensional scales (the disk mass-to-light ratio M/L and the halo central density) of standard disk-halo decompositions. We find that, if the rotation curve is decomposed by means of our self-consistent models, the disk-halo degeneracy is removed and that typical rotation curves are fitted by models that are below the maximum-disk prescription. Similar results are obtained from a study of NGC 3198. Finally, we quantify the flattening of the spheroidal halo, which is significant, especially on the scale of the visible disk.
Key words: galaxies: spiral / galaxies: structure / galaxies: halos / galaxies: kinematics and dynamics / galaxies: individual: NGC 3198
Appendices A and B are only available in electronic form at http://www.aanda.org
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.