Issue |
A&A
Volume 518, July-August 2010
Herschel: the first science highlights
|
|
---|---|---|
Article Number | L107 | |
Number of page(s) | 5 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201014515 | |
Published online | 16 July 2010 |
Letter to the Editor
Water abundance variations around high-mass protostars: HIFI observations of the DR21 region*
1
SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands e-mail: vdtak@sron.nl
2
Kapteyn Institute, University of Groningen, The Netherlands
3
Laboratoire d'Astrophysique de Bordeaux, Floirac, France
4
Max-Planck-Institut für Radioastronomie, Bonn, Germany
5
Denison University, Granville OH, USA
6
Harvard-Smithsonian Center for Astrophysics, Cambridge, USA
7
Sterrewacht, Universiteit Leiden, The Netherlands
8
MPI für Extraterrestrische Physik, Garching, Germany
9
Institute of Astronomy, ETH Zürich, 8093 Zürich, Switzerland
10
School of Physics and Astronomy, University of Leeds, UK
11
Herzberg Institute of Astrophysics, Victoria, Canada
12
Dept. of Physics and Astronomy, University of Victoria, Canada
13
Chalmers University of Technology, 41296 Göteborg, Sweden
14
Observatorio Astronómico Nacional, Alcalá de Henares, Spain
15
INAF – Istituto di Fisica dello Spazio Interplanetario, Roma, Italy
16
Dept. of Astronomy, University of Michigan, Ann Arbor, USA
17
California Institute of Technology, Pasadena CA 91125, USA
18
CAB, INTA-CSIC, Torrejón de Ardoz, Spain
19
Observatoire de Paris-Meudon, Meudon, France
20
University of Amsterdam, The Netherlands
21
LERMA and UMR 8112 du CNRS, Observatoire de Paris, France
22
Dept. of Physics and Astronomy, University of Waterloo, Canada
23
Joint ALMA Observatory, Santiago, Chile
24
Centre for Star and Planet Formation, U. of Copenhagen, Denmark
25
Department of Astronomy, Stockholm University, Sweden
26
Johns Hopkins University, Baltimore, USA
27
KOSMA, I. Physik. Institut, Universität zu Köln, Germany
28
JPL, California Institute of Technology, Pasadena, CA 91109, USA
29
Dept. of Physics and Astronomy, University of Calgary, Canada
30
CESR, Université de Toulouse, France
31
European Space Astronomy Centre, ESA, Madrid, Spain
Received:
26
March
2010
Accepted:
20
April
2010
Context. Water is a key molecule in the star formation process, but its spatial distribution in star-forming regions is not well known.
Aims. We study the distribution of dust continuum and H2O and 13CO line emission in DR21, a luminous star-forming region with a powerful outflow and a compact H ii region.
Methods. Herschel-HIFI spectra near 1100 GHz show narrow 13CO 10–9 emission and H2O 111–000 absorption from the dense core and broad emission from the outflow in both lines. The H2O line also shows absorption by a foreground cloud known from ground-based observations of low-J CO lines.
Results. The dust continuum emission is extended over 36” FWHM, while the 13CO and H2O lines are confined to ≈24” or less. The foreground absorption appears to peak further North than the other components. Radiative transfer models indicate very low abundances of ~2×10-10 for H2O and ~8×10-7 for 13CO in the dense core, and higher H2O abundances of ~4×10-9 in the foreground cloud and ~7×10-7 in the outflow.
Conclusions. The high H2O abundance in the warm outflow is probably due to the evaporation of water-rich icy grain mantles, while the H2O abundance is kept down by freeze-out in the dense core and by photodissociation in the foreground cloud.
Key words: ISM: molecules / stars: formation / astrochemistry / ISM: individual objects: DR21
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.