Issue |
A&A
Volume 518, July-August 2010
Herschel: the first science highlights
|
|
---|---|---|
Article Number | L111 | |
Number of page(s) | 5 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201014577 | |
Published online | 16 July 2010 |
Letter to the Editor
Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334*
1
I. Physikalisches Institut der Universität
zu Köln, Zülpicher Straße 77, 50937 Köln, Germany e-mail: ossk@pk1.uni-koeln.de
2
SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV
Groningen, The Netherlands
3
California Institute of Technology, Pasadena, CA 91125 USA
4
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121, Bonn, Germany
5
Institute of Astronomy, ETH Zürich, 8093 Zürich, Switzerland
6
University of Michigan, Ann Arbor, MI 48197 USA
7
Laboratoire d'Astrophysique de Grenoble, UMR 5571-CNRS, Université Joseph Fourier, Grenoble, France
8
Université de Bordeaux, Laboratoire d'Astrophysique de Bordeaux, France; CNRS/INSU, UMR 5804, Floirac, France
9
Istituto Fisica Spazio Interplanetario INAF, via Fosso del Cavaliere 100, 00133 Roma, Italy
10
Leiden Observatory, Universiteit Leiden, PO Box 9513, 2300 RA Leiden, The Netherlands
11
Université de Toulouse, UPS, CESR, 9 avenue du colonel Roche, 31062 Toulouse Cedex 4, France
12
Institut d'Astrophysique Spatiale, Université Paris-Sud, Bât. 121, 91405 Orsay Cedex, France
13
LERMA & UMR 8112 du CNRS, Observatoire de Paris, 61, Av. de l'Observatoire, 75014 Paris, France
14
School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT UK
15
CNRS, UMR 5187, 31028 Toulouse, France
16
Centro de Astrobiología, CSIC-INTA, 28850, Madrid, Spain
17
NAF Osservatorio Astrofisico di Arcetri, Florence Italy
18
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Amsterdam, The Netherlands
19
Department of Astrophysics/IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands
20
Université Pierre et Marie Curie, LPMAA UMR CNRS 7092, Case 76, 4 place Jussieu, 75252 Paris Cedex 05, France
21
LERMA & UMR 8112 du CNRS, Observatoire de Paris and École Normale Supérieure,
24 rue Lhomond, 75231 Paris Cedex 05, France
22
Department of Astronomy and Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada
23
Observatorio Astronómico Nacional, Apdo. 112, 28803 Alcalá de Henares, Spain
24
Jet Propulsion Laboratory, 4800 Oak Grove Drive, MC 302-231, Pasadena, CA 91109, USA
25
Astronomy Department, University of Maryland, College Park, MD 20742, USA
26
Ohio State University, Columbus, OH 43210, USA
27
NRC/HIA Victoria, BC V9E 2E7, Canada
28
Instituto de Radio Astronomía Milimétrica (IRAM), Avenida Divina Pastora 7, Local 20, 18012 Granada, Spain
29
Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
30
University of Western Ontario, Department of Physics & Astronomy, London, N6A 3K7 Ontario, Canada
31
Institut für 4D-Technologien, FHNW, 5210 Windisch, Switzerland
32
Center for Astrophysics, Cambridge MA 02138, USA
33
Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400005, India
34
Experimental Physics Dept., National University of Ireland Maynooth, Co. Kildare, Ireland
35
Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
36
INAF - Osservatorio Astronomico di Roma, Monte Porzio Catone, Italy
37
Centre for Radio Astronomy, University of Calgary, Canada
38
Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands
39
European Space Astronomy Centre, Urb. Villafranca del Castillo, PO Box 50727, Madrid 28080, Spain
40
Department of Physics and Astronomy, University College London, London, UK
41
Atacama Large Millimeter Array, Joint ALMA Office, Santiago, Chile
Received:
30
March
2010
Accepted:
7
May
2010
Aims. We identify a prominent absorption feature at 1115 GHz, detected in first HIFI spectra towards high-mass star-forming regions, and interpret its astrophysical origin.
Methods. The characteristic hyperfine pattern of the H2O+ ground-state rotational transition, and the lack of other known low-energy transitions in this frequency range, identifies the feature as H2O+ absorption against the dust continuum background and allows us to derive the velocity profile of the absorbing gas. By comparing this velocity profile with velocity profiles of other tracers in the DR21 star-forming region, we constrain the frequency of the transition and the conditions for its formation.
Results. In DR21, the velocity distribution of H2O+ matches that of the [C ii] line at 158 μm and of OH cm-wave absorption, both stemming from the hot and dense clump surfaces facing the H ii-region and dynamically affected by the blister outflow. Diffuse foreground gas dominates the absorption towards Sgr B2. The integrated intensity of the absorption line allows us to derive lower limits to the H2O+ column density of 7.2 × 1012 cm-2 in NGC 6334, 2.3 × 1013 cm-2 in DR21, and 1.1 × 1015 cm-2 in Sgr B2.
Key words: astrochemistry / line: identification / molecular data / ISM: abundances / ISM: molecules / ISM: clouds
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.