Issue |
A&A
Volume 517, July 2010
|
|
---|---|---|
Article Number | A96 | |
Number of page(s) | 37 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/200913501 | |
Published online | 17 August 2010 |
A line confusion limited millimeter survey of Orion KL I. Sulfur carbon chains*
I. Sulfur carbon chains
Centro de Astrobiología (CSIC-INTA), Departamento de
Astrofísica Molecular, Ctra. de Aljalvir Km 4, 28850
Torrejón de Ardoz, Madrid, Spain e-mail: [belen;pardo]@damir.iem.csic.es; [jcernicharo;jr.goicoechea]@cab.inta-csic.es
Received:
19
October
2009
Accepted:
15
April
2010
We perform a sensitive (line confusion limited), single-side
band spectral survey towards Orion KL with the IRAM 30 m
telescope, covering the following frequency ranges:
80–115.5 GHz, 130–178 GHz, and 197–281 GHz. We detect
more than 14 400 spectral features of which 10 040 have been identified up to date and attributed to 43 different molecules,
including 148 isotopologues and lines from vibrationally excited
states. In this paper, we focus on the study of OCS, HCS+, H2CS, CS, CCS, C3S, and their isotopologues.
In addition, we map the OCS J = 18–17 line
and complete complementary observations of several
OCS lines at selected positions around Orion IRc2 (the position
selected for the survey).
We report the first detection of
OCS ν2 = 1 and ν3 = 1 vibrationally
excited states in space and the first detection of C3S in warm clouds.
Most of CCS, and almost all C3S, line emission arises from
the hot core indicating an enhancement of their abundances in warm and
dense gas.
Column densities and isotopic ratios have been calculated
using a large velocity gradient (LVG) excitation and radiative transfer
code (for the low density gas components) and a local thermal equilibrium
(LTE) code (appropriate for the warm and dense hot core component), which takes
into account the different
cloud components known to exist towards Orion KL,
the extended ridge,
compact ridge, plateau, and hot
core.
The vibrational temperature derived from OCS ν2 = 1 and ν3 = 1 levels is 210 K, similar to the gas kinetic
temperature in the hot core. These OCS high energy levels are
probably
pumped by absorption of IR dust photons.
We derive an upper limit to the OC3S,
H2CCS, HNCS,
HOCS+, and NCS column densities.
Finally, we discuss the D/H abundance ratio and
infer the following isotopic abundances:
12C/13C = 45 ± 20, 32S/34S = 20 ± 6, 32S/33S = 75 ± 29,
and 16O/18O = 250 ± 135.
Key words: surveys / stars: formation / ISM: abundances / ISM: clouds / ISM: molecules / radio lines: ISM
Appendices A and B are only available in electronic form at http://www.aanda.org
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.