Issue |
A&A
Volume 515, June 2010
|
|
---|---|---|
Article Number | A104 | |
Number of page(s) | 15 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/200912692 | |
Published online | 15 June 2010 |
Simulation of the growth of the 3D Rayleigh-Taylor instability in supernova remnants using an expanding reference frame
1
Laboratoire AIM, CEA/DSM – CNRS – Université Paris Diderot, IRFU/SAp, 91191 Gif sur Yvette, France
e-mail: federico.fraschetti@cea.fr
2
LUTh, Observatoire de Paris, CNRS-UMR8102 and Université Paris VII, 5 Place Jules Janssen, 92195 Meudon Cedex, France
3
Lunar and Planetary Lab & Dept. of Physics, University of Arizona, Tucson, AZ, 85721, USA
4
Institute for Theoretical Physics, University of Zurich, 8057 Zurich, Switzerland
Received:
14
June
2009
Accepted:
26
February
2010
Context. The Rayleigh-Taylor instabilities that are generated by the deceleration of a supernova remnant during the ejecta-dominated phase are known to produce finger-like structures in the matter distribution that modify the geometry of the remnant. The morphology of supernova remnants is also expected to be modified when efficient particle acceleration occurs at their shocks.
Aims. The impact of the Rayleigh-Taylor instabilities from the ejecta-dominated to the Sedov-Taylor phase is investigated over one octant of the supernova remnant. We also study the effect of efficient particle acceleration at the forward shock on the growth of the Rayleigh-Taylor instabilities.
Methods. We modified the Adaptive Mesh Refinement code RAMSES to study with hydrodynamic numerical simulations the evolution of supernova remnants in the framework of an expanding reference frame. The adiabatic index of a relativistic gas between the forward shock and the contact discontinuity mimics the presence of accelerated particles.
Results. The great advantage of the super-comoving coordinate system adopted here is that it minimizes numerical diffusion at the contact discontinuity, since it is stationary with respect to the grid. We propose an accurate expression for the growth of the Rayleigh-Taylor structures that smoothly connects the early growth to the asymptotic self-similar behaviour.
Conclusions. The development of the Rayleigh-Taylor structures is affected, although not drastically, if the blast wave is dominated by cosmic rays. The amount of ejecta that reaches the shocked interstellar medium is smaller in this case. If acceleration were to occur at both shocks, the extent of the Rayleigh-Taylor structures would be similar but the reverse shock would be strongly perturbed.
Key words: ISM: supernova remnants / acceleration of particles / hydrodynamics
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.