Issue |
A&A
Volume 513, April 2010
|
|
---|---|---|
Article Number | A79 | |
Number of page(s) | 21 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/200913731 | |
Published online | 30 April 2010 |
Gas- and dust evolution in protoplanetary disks
Junior Research Group at the Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: birnstiel@mpia.de
Received:
24
November
2009
Accepted:
26
January
2010
Context. Current models of the size- and radial evolution of dust in protoplanetary disks generally oversimplify either the radial evolution of the disk (by focussing at one single radius or by using steady state disk models) or they assume particle growth to proceed monodispersely or without fragmentation. Further studies of protoplanetary disks – such as observations, disk chemistry and structure calculations or planet population synthesis models – depend on the distribution of dust as a function of grain size and radial position in the disk.
Aims. We attempt to improve upon current models to be able to investigate how the initial conditions, the build-up phase, and the evolution of the protoplanetary disk influence growth and transport of dust.
Methods. We introduce a new model similar to Brauer et al. (2008, A&A, 480, 859) in which we now include the time-dependent viscous evolution of the gas disk, and in which more advanced input physics and numerical integration methods are implemented.
Results. We show that grain properties, the gas pressure gradient, and the amount of turbulence are much more influencing the evolution of dust than the initial conditions or the build-up phase of the protoplanetary disk. We quantify which conditions or environments are favorable for growth beyond the meter size barrier. High gas surface densities or zonal flows may help to overcome the problem of radial drift, however already a small amount of turbulence poses a much stronger obstacle for grain growth.
Key words: accretion, accretion disks / circumstellar matter / stars: formation / stars: pre-main sequence / infrared: stars
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.