Issue |
A&A
Volume 512, March-April 2010
|
|
---|---|---|
Article Number | A40 | |
Number of page(s) | 15 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/200913492 | |
Published online | 26 March 2010 |
Toward understanding the formation of multiple systems*
A pilot IRAM-PdBI survey of Class 0 objects
1
Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d'Astrophysique, C.E. Saclay,
Orme des Merisiers, 91191 Gif-sur-Yvette, France e-mail: amaury@eso.org
2
Laboratoire de radioastronomie, UMR 8112 du CNRS, Ecole normale supérieure et Observatoire de Paris, 24 rue Lhomond, 75231 Paris, France
3
School of Physics & Astronomy, Cardiff University, Cardiff, CF24 3AA, Wales, UK
4
School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
5
Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
6
Astronomy Department, University of California, Berkeley, CA 94720-3411, USA
7
Laboratoire d'Astrophysique de Grenoble, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
Received:
16
October
2009
Accepted:
13
January
2010
Context. The formation process of binary stars and multiple systems is poorly understood. The multiplicity rate of Class II pre-main-sequence stars and Class I protostars is well documented and known to be high (~ 30% to 50% between ~100 and 4000 AU). However, optical / near-infrared observations of Class I/Class II YSOs barely constrain the pristine properties of multiple systems, since dynamical evolution can quickly alter these properties during the protostellar phase.
Aims. Here, we seek to determine the typical outcome of protostellar collapse and to constrain models of binary formation by core fragmentation during collapse, using high-resolution millimeter continuum imaging of very young (Class 0) protostars observed at the beginning of the main accretion phase.
Methods. We carried out a pilot high-resolution study of 5 Class 0 objects, including 3 Taurus sources and 2 Perseus sources, using the most
extended (A) configuration of the IRAM Plateau de Bure Interferometer (PdBI) at 1.3 mm. Our PdBI observations have a typical HPBW
resolution ~0.3´´-0.5´´ and rms continuum sensitivity ~0.1-1 mJy/beam, which allow us to probe the multiplicity
of Class 0 protostars down to separations AU and circumstellar mass ratios
.
Results. We detected all 5 primary Class 0 sources in the 1.3 mm dust continuum. A single component associated with the primary Class 0 object was detected in the case of the three Taurus sources, while robust evidence of secondary components was found toward the two Perseus sources: L1448-C and NGC1333-IR2A. We show that the secondary 1.3 mm continuum component detected ~600 AU south-east of L1448-C, at a position angle close to that of the CO(2-1) jet axis traced by our data, is an outflow feature directly associated with the powerful jet driven by L1448-C. The secondary 1.3 mm continuum component detected ~1900 AU south-east of NGC1333-IR2A may either be a genuine protostellar companion or trace the edge of an outflow cavity. Therefore, our PdBI observations revealed only wide (>1500 AU) protobinary systems and/or outflow-generated features.
Conclusions. When combined with previous millimeter interferometric observations of Class 0 protostars, our pilot PdBI study tentatively suggests that the binary fraction in the ~75-1000 AU range increases from the Class 0 to the Class I stage. It also seems to argue against purely hydrodynamic models of binary star formation. We briefly discuss possible alternative scenarios to reconcile the low multiplicity rate of Class 0 protostars on small scales with the higher binary fraction observed at later (e.g. Class I) evolutionary stages.
Key words: stars: formation / binaries: general / ISM: clouds / ISM: jets and outflows
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.