Issue |
A&A
Volume 509, January 2010
|
|
---|---|---|
Article Number | A21 | |
Number of page(s) | 7 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/200913332 | |
Published online | 12 January 2010 |
First spectroscopic analysis of
Scorpii C and
Scorpii E
Discovery of a new HgMn star in the multiple system
Scorpii
INAF - Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy e-mail: gca@oact.inaf.it
Received:
21
September
2009
Accepted:
8
October
2009
Context. The multiple system β Scorpii consists of five components and two suspected members forming a total of seven stars. In the past, this system acquired much interest because of a series of occultation by the planet Jupiter and one of its satellites (Io). The study of this phenomena allowed us to ascertain the principal components of the system and the possible nature of each component.
Aims. By using optical spectroscopy, we derive radial velocities, ,
, abundances
,
, and
for β Sco C and E. We also refine previously published values of
,
, and
of β Sco Aa + Ab to obtain a clear understanding of the evolutionary state of the β Sco system.
Methods. We convert Doppler shifts in wavelength into radial velocities. Atmospheric parameters and abundances are computed by assuming the local thermodynamic equilibrium using model atmospheres and the spectral synthesis codes ATLAS and SYNTHE.
Results. We solve the orbit of β Sco E and provide information about the motion of β Sco C. By fitting four Balmer lines, we determine that:
K,
, and
K,
. Rotational velocities are derived by
modeling the profiles of metallic lines:
km s-1 and
km s-1.
As for the abundances, we find that β Sco C is more or less of solar abundance,
while β Sco Ea has a significant overabundance of manganese, followed by
those of strontium, phosphorous, and titanium. The most underabundant element is
magnesium, followed by silicon, aluminum, sulfur, iron, and nickel.
Other light elements, such as carbon, nitrogen, oxygen, and neon, are found to be normal. From the derived values of luminosities and temperatures,
we infer that these stars have an age of ≈
Myr.
Conclusions. We explain the observed variability in velocity of β Sco E in terms of a close companion. Thus, we observe a triple system composed by β Sco C and β Sco Ea + Eb. While β Sco C is a normal star, β Sco Ea is probably a mercury-manganese (HgMn) star. The line-profile variability observed for β Sco C could be explained by assuming its membership to the class of slow pulsating B stars. According to the position of β Sco Ab in the HR diagram, we exclude the possibility that this star could be a β Cephei class pulsator.
Key words: stars: individual: β Scorpii / binaries: spectroscopic / stars: abundances / stars: chemically peculiar
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.