Issue |
A&A
Volume 509, January 2010
|
|
---|---|---|
Article Number | A12 | |
Number of page(s) | 13 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/200912708 | |
Published online | 12 January 2010 |
The long-wavelength emission of interstellar PAHs: characterizing the spinning dust contribution
Institut d'Astrophysique Spatiale, UMR 8617, Université Paris-Sud, 91405 Orsay, France e-mail: nathalie.ysard@ias.u-psud.fr
Received:
17
June
2009
Accepted:
24
September
2009
Context. The emission of cold dust grains at long wavelengths will soon be observed by the Planck and Herschel satellites and will provide new constraints on the nature of interstellar dust. In particular, the microwave galactic anomalous foreground detected between 10 to 90 GHz, proposed as coming from small spinning grains (PAHs), should help to define these species better. Moreover, understanding the fluctuations of the anomalous foreground quantitatively over the sky is crucial for CMB studies.
Aims. We focus on the long-wavelength emission of interstellar PAHs in their vibrational and rotational transitions. We present here the first model that coherently describes the PAH emission from the near-IR to microwave range.
Methods. We take quantum effects into account to describe the rotation of PAHs and compare our results to current models of spinning dust to assess the validity of the classical treatment used. Between absorptions of stellar photons, we followed the rovibrational radiative cascade of PAHs. We used the exact-statistical method of Draine & Li to derive the distribution of PAH internal energy and followed a quantum approach for the rotational excitation induced by vibrational (IR) transitions. We also examined the influence of the vibrational relaxation scheme and of the low-energy cross-section on the PAH emission. We study the emissivity of spinning PAHs in a variety of physical conditions (radiation field intensity and gas density), search for specific signatures in this emission that can be looked for observationally, and discuss how the anomalous foreground may constrain the PAH size distribution.
Results. Simultaneously predicting the vibrational and rotational emission of PAHs, our model can explain the observed emission of the Perseus molecular cloud from the
IR to the microwave range with plausible PAH properties. We show that for mm the PAH vibrational emission no longer scales with the radiation
field intensity (G0), unlike the mid-IR part of the spectrum (which scales with G0). This emission represents less than 10% of the total dust emission at 100 GHz.
Similarly, we find the broadband emissivity of spinning PAHs per carbon atom to be rather constant for
and for proton densities
cm-3.
In the diffuse ISM, photon exchange and gas-grain interactions play comparable roles in exciting the rotation of PAHs, and the emissivity of spinning PAHs
is dominated by the contribution of small species (bearing less than 100 C atoms). We show that the classical description of rotation
used in previous works is a good approximation and that unknowns in the vibrational relaxation scheme and low-energy cross-section affect the PAH rotational emissivity around
30 GHz by less than 15%.
Conclusions. The contrasted behaviour of the PAH vibrational and rotational emissivities with G0 provides a clear prediction that can be tested against observations of anomalous and dust mid-IR emissions: this is the subject of a companion paper. Comparison of these emissions complemented with radio observations (21 cm or continuum) will provide constraints on the fraction of small species and the electric dipole moment of interstellar PAHs.
Key words: ISM: general / dust, extinction / radiation mechanisms: general
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.