Issue |
A&A
Volume 509, January 2010
|
|
---|---|---|
Article Number | A105 | |
Number of page(s) | 16 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/200911829 | |
Published online | 28 January 2010 |
Looking for the first galaxies: lensing or blank fields?
1
Laboratoire d'Astrophysique de Toulouse-Tarbes,
CNRS, Université de Toulouse, 14 Av. Edouard-Belin, 31400 Toulouse, France e-mail: [alexandre.maizy;roser]@ast.obs-mip.fr
2
Institute for Computational Cosmology,
Department of Physics, Durham University,
South Road, Durham, DH1 3LE, UK e-mail: johan.richard@durham.ac.uk
3
Instituto de Astronomía, UNAM, Apartado Postal 70-264, 04510 México DF,
Mexico e-mail: madeleo@astroscu.unam.mx
4
OAMP, Laboratoire d'Astrophysique de Marseille, UMR 6110, Traverse du Siphon, 13012 Marseille, France e-mail: jean-paul.kneib@oamp.fr
Received:
11
February
2009
Accepted:
26
October
2009
Context. The identification and study of the first galaxies remains one of the most
exciting topics in observational cosmology. The determination of the best
possible observing strategies is a very important choice in order to
build up a representative sample of spectroscopically confirmed sources
at high-z (z 7), beyond the limits of present-day
observations.
Aims. This paper is intended to precisely adress the relative efficiency of
lensing and blank fields in the identification and study of galaxies at
6 z
12.
Methods. The detection efficiency and field-to-field variance are estimated from
direct simulations of both blank and lensing fields observations. Present
known luminosity functions in the UV are used to determine the expected
distribution and properties of distant samples at z 6 for a
variety of survey configurations. Different models for well known lensing
clusters are used to simulate in details the magnification and dilution
effects on the backgound distant population of galaxies.
Results. The presence of a strong-lensing cluster along the line of sight has a
dramatic effect on the number of observed sources, with a positive
magnification bias in typical ground-based “shallow” surveys
(AB 25.5). The positive magnification bias increases with the
redshift of sources and decreases with both depth of the survey and the
size of the surveyed area. The maximum efficiency is reached for lensing
clusters at z ~ 0.1-0.3. Observing blank fields in shallow surveys is
particularly inefficient as compared to lensing fields if the UV LF for
LBGs is strongly evolving at z
7. Also in this case, the number
of z≥ 8 sources expected at the typical depth of JWST (AB ~ 28-29)
is much higher in lensing than in blank fields (e.g. a factor of ~10
for AB
28).
All these results have been obtained assuming that number counts derived
in clusters are not dominated by sources below the limiting surface brightness
of observations, which in turn depends on the reliability of the usual
scalings applied to the size of high-z sources.
Conclusions. Blank field surveys with a large field of view are needed to prove the
bright end of the LF at z 6-7, whereas lensing clusters are
particularly useful for exploring the mid to faint end of the LF.
Key words: gravitational lensing: strong / galaxies: high-redshift / galaxies: luminosity function, mass function / galaxies: clusters: general
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.