Issue |
A&A
Volume 509, January 2010
|
|
---|---|---|
Article Number | A77 | |
Number of page(s) | 10 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/200811437 | |
Published online | 22 January 2010 |
Oscillating red giants in the CoRoT exofield: asteroseismic mass and radius determination*
1
Institute for Astronomy, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria
2
Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada e-mail: kallinger@phas.ubc.ca
3
Observatoire de Paris, LESIA, CNRS UMR 8109 Place Jules Janssen, 92195 Meudon, France
4
Department of Astronomy and Physics, Saint Mary's University, Halifax, NS, B3H 3C3, Canada
5
Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Heverlee, Belgium
6
Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany
7
University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT, UK
8
Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium
9
Laboratoire dAstrophysique de Marseille (UMR 6110), Technople de Marseille-Etoile, 13388 Marseille Cedex 13, France
Received:
28
November
2008
Accepted:
17
November
2009
Context. Observations and analysis of solar-type oscillations in red-giant stars is an emerging aspect of asteroseismic analysis with a number of open questions yet to be explored. Although stochastic oscillations have previously been detected in red giants from both radial velocity and photometric measurements, those data were either too short or had sampling that was not complete enough to perform a detailed data analysis of the variability. The quality and quantity of photometric data as provided by the CoRoT satellite is necessary to provide a breakthrough in observing p-mode oscillations in red giants. We have analyzed continuous photometric time-series of about 11 400 relatively faint stars obtained in the exofield of CoRoT during the first 150 days long-run campaign from May to October 2007. We find several hundred stars showing a clear power excess in a frequency and amplitude range expected for red-giant pulsators. In this paper we present first results on a sub-sample of these stars.
Aims. Knowing reliable fundamental parameters like mass and radius is essential for detailed asteroseismic studies of red-giant stars. As the CoRoT exofield targets are relatively faint (11-16 mag) there are no (or only weak) constraints on the stars' location in the H-R diagram. We therefore aim to extract information about such fundamental parameters solely from the available time series.
Methods. We model the convective background noise and the power excess hump due to pulsation with a global model fit and deduce reliable estimates for the stellar mass and radius from scaling relations for the frequency of maximum oscillation power and the characteristic frequency separation.
Results. We provide a simple method to estimate stellar masses and radii for stars exhibiting solar-type oscillations. Our method is tested on a number of known solar-type pulsators.
Key words: stars: oscillations / stars: fundamental parameters / techniques: photometric
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.