Issue |
A&A
Volume 507, Number 1, November III 2009
|
|
---|---|---|
Page(s) | 347 - 354 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/200912912 | |
Published online | 03 September 2009 |
Hyperfine structure in the J = 1–0 transitions of DCO+, DNC, and HN13C: astronomical observations and quantum-chemical calculations
1
SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands e-mail: vdtak@sron.nl
2
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
3
I. Physikalisches Institut der Universität, Zülpicher Straße 77, 50937 Köln, Germany
4
Institut für Physikalische Chemie, Universität Mainz, 55099 Mainz, Germany
5
Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
Received:
17
July
2009
Accepted:
27
August
2009
Context. Knowledge of the hyperfine structure of molecular lines is useful for estimating reliable column densities from observed emission, and essential for the derivation of kinematic information from line profiles.
Aims. Deuterium bearing molecules are especially useful in this regard, because they are good probes of the physical and chemical structure of molecular cloud cores on the verge of star formation. However, the necessary spectroscopic data are often missing, especially for molecules which are too unstable for laboratory study.
Methods. We have observed the ground-state () rotational transitions of DCO+,
HN13C and DNC with the IRAM 30 m telescope toward the dark cloud LDN 1512
which has exceptionally narrow lines permitting hyperfine splitting to be resolved
in part. The measured splittings of 50–300 kHz are used to derive nuclear
quadrupole and spin-rotation parameters for these species. The measurements
are supplemented by high-level quantum-chemical calculations using
coupled-cluster techniques and large atomic-orbital basis sets.
Results. We find kHz and
kHz for DCO+,
kHz for HN13C, and eQq(D) =265.9 (83) kHz and
eQq(N) = 288.2 (71) kHz for DNC. The numbers for DNC are consistent
with previous laboratory data, while our constants for DCO+ are somewhat
smaller than previous results based on astronomical data. For both DCO+ and
DNC, our results are more accurate than previous determinations. Our results
are in good agreement with the corresponding best theoretical estimates, which
amount to
kHz and CI = -0.69 kHz for DCO+,
kHz
for HN13C, and eQq(D) = 257.6 kHz and eQq(N) = 309.6 kHz for
DNC. We also derive updated rotational constants for HN13C:
B = 43 545.6000 (47) MHz and D = 93.7 (20) kHz.
Conclusions. The hyperfine splittings of the DCO+, DNC and HN13C lines range
over 0.47–1.28 km s-1, which is comparable to typical line widths in
pre-stellar cores and to systematic gas motions on ~1000 AU scales in
protostellar cores. We present tabular information to allow inclusion of the
hyperfine splitting in astronomical data interpretation. The large
differences in the 14N quadrupole parameters of DNC and HN13C have
been traced to differences in the vibrational corrections caused by
significant non-rigidity of these molecules, particularly along the bending
coordinate.
Key words: ISM: clouds / ISM: molecules / molecular data / radio lines: ISM
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.