Issue |
A&A
Volume 507, Number 1, November III 2009
|
|
---|---|---|
Page(s) | 301 - 316 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/200911723 | |
Published online | 03 September 2009 |
Resolving the asymmetric inner wind region of the yellow hypergiant IRC +10420 with VLTI/AMBER in low and high spectral resolution mode*
1
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: driebe@mpifr-bonn.mpg.de
2
Laboratoire Universitaire d'Astrophysique de Nice, UMR 6525, Université de Nice/CNRS, 06108 Nice Cedex 2, France
3
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany
4
European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19, Chile
5
INAF - Osservatorio Astrofisico di Arcetri, Istituto Nazionale di Astrofisica, Largo E. Fermi 5, 50125 Firenze, Italy
6
Observatoire de la Côte d'Azur/CNRS, UMR 6525 H. Fizeau, Univ. Nice Sophia Antipolis, Avenue Copernic, 06130 Grasse, France
7
Laboratoire d'Astrophysique de Grenoble, UMR 5571, Université Joseph Fourier/CNRS, 38041 Grenoble Cedex 9, France
Received:
26
January
2009
Accepted:
1
August
2009
Context. IRC +10420 is a massive evolved star belonging to the group of yellow hypergiants. Currently, this star is rapidly evolving through the Hertzprung-Russell diagram, crossing the so-called yellow void. IRC +10420 is suffering from intensive mass loss which led to the formation of an extended dust shell. Moreover, the dense stellar wind of IRC +10420 is subject to strong line emission.
Aims. Our goal was to probe the photosphere and the innermost circumstellar environment of IRC +10420, to
measure the size of its continuum- as well as the Brline-emitting region on milliarcsecond
scales, and to search for evidence of an asymmetric distribution of IRC +10420's dense, circumstellar gas.
Methods. We obtained near-infrared long-baseline interferometry of IRC +10420
with the AMBER instrument of ESO's Very Large Telescope Interferometer (VLTI).
The measurements were carried out in May/June 2007 and May 2008 in low-spectral resolution mode in the JHK
bands using three auxillary telescopes (ATs) at projected baselines ranging from 30 to 96 m, and in October
2008 in high-spectral resolution mode in the K band around the Bremission line
using three unit telescopes (UTs) with projected baselines between 54 and 129 m.
The high-spectral resolution mode observations were analyzed by means of radiative transfer
modeling using CMFGEN and the 2D Busche & Hillier codes.
Results. For the first time, we have been able to absolutely calibrate the H- and K-band data and, thus, to determine
the angular size of IRC+10420's continuum- and Brγ line-emitting regions. We found that both the low
resolution differential and closure phases are zero within the uncertainty limits across all three bands.
In the high-spectral resolution observations, the visibilities show a noticeable drop across the Brγ line
on all three baselines. We found differential phases up to -25° in the redshifted part of the Brγ
line and a non-zero closure phase close to the line center. The calibrated visibilities were corrected for AMBER's
limited field-of-view to appropriately account for the flux contribution of IRC +10420's extended dust shell.
From our low-spectral resolution AMBER data we derived FWHM Gaussian sizes of 1.05±0.07 and 0.98±0.10 mas
for IRC +10420's continuum-emitting region in the H and K bands, respectively.
From the high-spectral resolution data, we obtained a FWHM Gaussian size of 1.014±0.010 mas
in the K-band continuum. The Br-emitting region can be fitted with a geometric ring model with a diameter
of
mas, which is approximately 4 times the stellar size.
The geometric model also provides some evidence that the Br
line-emitting region is elongated towards a
position angle of 36°, well aligned with the symmetry axis of the outer reflection nebula. Assuming an unclumped
wind and a luminosity of 6
105
, the spherical radiative transfer modeling with CMGFEN yields a current
mass-loss rate of 1.5–2.0
10-5
based on the Br
equivalent width. However, the
spherical CMFGEN model poorly reproduces the observed line shape, blueshift, and extension, definitively
showing that the IRC +10420 outflow is asymmetric. Our 2D radiative transfer modeling shows that the
blueshifted Br
emission and the shape of the visibility across the emission line can be explained with
an asymmetric bipolar outflow with a high density contrast from pole to equator (8–16), where the
redshifted light is substantially diminished.
Key words: instrumentation: high angular resolution / instrumentation: interferometers / stars: circumstellar matter / stars: individual: IRC +10 420 / stars: mass-loss / stars: supergiants
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.