EDP Sciences
Free Access
Volume 505, Number 2, October II 2009
Page(s) 605 - 612
Section Galactic structure, stellar clusters, and populations
DOI https://doi.org/10.1051/0004-6361/200912759
Published online 11 August 2009
A&A 505, 605-612 (2009)
DOI: 10.1051/0004-6361/200912759

The evolution of carbon and oxygen in the bulge and disk of the Milky Way

G. Cescutti1, F. Matteucci1, 2, A. McWilliam3, and C. Chiappini2, 4

1  Dipartimento di Astronomia, Universitá di Trieste, via G.B. Tiepolo 11, 34131 Trieste, Italy
    e-mail: cescutti@oats.inaf.it
2  INAF Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131 Trieste, Italy
3  Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101, USA
4  Observatoire Astronomique de l'Université de Genève, 51 Chemin des Mailletes, Sauverny, 1290, Switzerland

Received 24 June 2009 / Accepted 22 July 2009

Context. The evolution of C and O abundances in the Milky Way can impose strong constraints on stellar nucleosynthesis and help in understanding the formation and evolution of our Galaxy.
Aims. The aim of this paper is to review the measured C and O abundances in the disk and bulge of the Galaxy and compare the results to predictions of Galactic chemical evolution models.
Methods. We adopt two successful chemical evolution models for the bulge and the disk, respectively. They assume the same nucleosynthesis prescriptions but different histories of star formation.
Results. The data show a clear distinction between the trend of [C/O] in the thick and thin Galactic disks, while the thick disk and bulge trends are indistinguishable with a large (>0.5 dex) increase in the [C/O] ratio in the range from -0.1 to +0.4 dex for [O/H]. In our models we consider yields from massive stars with and without the inclusion of metallicity-dependent stellar winds. The observed increase in the [C/O] with metallicity in the bulge and thick disk lies between the predictions utilizing mass-loss rates of Maeder and Meynet & Maeder. A model without metallicity-dependent yields completely fails to match the observations. Thus, the relative increase in carbon abundance at high metallicity appears to come from metallicity-dependent stellar winds in massive stars. These results also explain the steep decline of the [O/Fe] ratio with [Fe/H] in the Galactic bulge, while the [Mg/Fe] ratio is enhanced at all [Fe/H].
Conclusions. We conclude that data and models are consistent with a rapid bulge and thick disk formation timescales, and with metallicity-dependent yields for C and O. The observed too high [C/O] ratios at low metallicity in the bulge may stem from an unaccounted source of carbon: very fast rotating metal poor stars, or metal-poor binary systems whose envelopes were stripped by Roche lobe overflow.

Key words: Galaxy: evolution -- Galaxy: bulge -- Galaxy: disk -- Galaxy: abundances -- stars: abundances -- nuclear reactions, nucleosynthesis, abundances

© ESO 2009

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.