Issue |
A&A
Volume 437, Number 2, July II 2005
|
|
---|---|---|
Page(s) | 429 - 436 | |
Section | Galactic structure, stellar clusters, and populations | |
DOI | https://doi.org/10.1051/0004-6361:20042292 | |
Published online | 21 June 2005 |
The origin of nitrogen
Implications of recent measurements of N/O in Galactic metal-poor halo stars
1
Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, 34131 Trieste, Italia e-mail: chiappini@ts.astro.it
2
Dipartimento di Astronomia, Universita' degli Studi di Trieste, via G. B. Tiepolo 11, 34131 Trieste, Italia
Received:
1
November
2004
Accepted:
28
February
2005
Recent new high-precision abundance data for Galactic halo stars
suggest important primary nitrogen production in very metal-poor massive stars.
Here, we compute a new model for the chemical evolution of the Milky Way aimed at explaining these new abundance data. The new data can be explained by adopting: a) the stellar yields obtained from stellar models that take into account rotation; and b) an extra production of nitrogen in the very metal-poor massive stars. In particular, we suggest an increase
of nearly a factor of 200 in 14N for a star of 60 and
40 for a star of
9
, for metallicities below
, with respect to the yields given in the
literature for
and rotational velocity of 300 km s-1.
We show that once we adopt the above prescriptions, our model is able to predict
high N/O abundance ratios at low metallicities and still
explains the nitrogen abundances observed in thin disk stars in the solar vicinity.
The physical motivation for a larger nitrogen production in massive stars in very metal-poor
environments could be the fact that some stellar models as well as observational data suggest that
at low metallicities stars rotate faster.
If this is the case, such large nitrogen production seen in the pristine phases
of the halo formation would not necessarily happen in Damped Lyman-α systems which
have metallicities always above
, and could have been pre-enriched.
We also compute the abundance gradient of N/O along the Galactic disk and show
that a negative gradient is predicted
once we adopt stellar yields where rotation is taken
into account. The latter result implies that intermediate mass stars
contribute less to the primary nitrogen than previously thought.
Key words: stars: rotation / Galaxy: evolution / Galaxy: formation
© ESO, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.