Issue |
A&A
Volume 504, Number 3, September IV 2009
|
|
---|---|---|
Page(s) | 751 - 767 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/200811434 | |
Published online | 09 July 2009 |
Star formation and mass assembly in high redshift galaxies*
1
INAF – Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio (RM), Italy e-mail: santini@oa-roma.inaf.it
2
Dipartimento di Fisica, Università di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy
3
Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
4
MPIA Max-Planck-Institute für Astronomie, Koenigstuhl 17, 69117 Heidelberg, Germany
5
INAF – Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131 Trieste, Italy
6
Dip. di Fisica, Università Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma, Italy
7
INFN – Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma, Italy
Received:
27
November
2008
Accepted:
24
April
2009
Aims. The goal of this work is to infer the star formation
properties and the mass assembly process of high redshift () galaxies from their IR emission using the 24 μm
band of MIPS-Spitzer.
Methods. We used an updated version of the GOODS-MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR.
Results. We
show that the two SFR indicators are roughly consistent, once
the uncertainties involved are taken into account. However,
they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases.
With this new catalog, we show that: a) at ,
the star formation rate is correlated well with stellar mass, and
this relationship seems to steepen with redshift if one relies on
IR-based estimates of the SFR; b) the contribution to the
global SFRD by massive galaxies increases with redshift up to
2.5, more rapidly than for galaxies of lower mass, but
appears to flatten at higher z; c) despite this
increase, the most important contributors to the SFRD at any z
are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at
, massive galaxies are actively
star-forming, with a median
yr-1. During this epoch, our targeted galaxies assemble a
substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution.
Conclusions. The analysis
of the SFR density and the SSFR seems to support
the downsizing scenario, according to which high mass
galaxies have formed their stars earlier and more rapidly than their
low mass counterparts. A comparison with renditions of
theoretical simulations of galaxy formation and evolution indicates
that these models follow the global increase in the SSFR with
redshift and predict the existence of quiescent galaxies even at
. However, the average SSFR is systematically
underpredicted by all models considered.
Key words: galaxies: evolution / galaxies: high-redshift / galaxies: fundamental parameters / galaxies: photometry / galaxies: starburst
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.