Issue |
A&A
Volume 503, Number 1, August III 2009
|
|
---|---|---|
Page(s) | 151 - 163 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/200809454 | |
Published online | 02 July 2009 |
Hot subdwarfs from the stable Roche lobe overflow channel
1
Armagh Observatory, College Hill, Armagh BT61 9DG, Northern Ireland, UK e-mail: syu@arm.ac.uk
2
National Astronomical Observatories Yunnan Observatory, the Chinese Academy of Sciences, PO Box 110, Kunming 650011, PR China
Received:
25
January
2008
Accepted:
2
June
2009
Context. Hot subdwarfs are core-helium-burning stars with extremely thin envelopes. We discuss the formation and evolution of hot subdwarfs formed through the stable Roche lobe overflow (RLOF) channel of intermediate-mass binaries, although their formation channels are various.
Aims. In this study, we concentrate on the formation and evolution of hot subdwarfs binaries through the stable RLOF channel of intermediate-mass binaries. We aim at setting out the properties of hot subdwarfs and their progenitors, so that we can understand the formation and evolution of hot subdwarfs.
Methods. Employing Eggleton's stellar
evolution code, we have computed conservative and nonconservative
population I binary evolution sequences. The initial mass of the
primary ranges from 2.2 to 6.3 , spaced by approximately
0.1 in log M, the initial mass ratio qi = M1/M2 is
between 1.1 and 4.5, and the Roche lobe overflow begins at the main
sequence, the Hertzsprung gap and the first giant branch. In
nonconservative binary evolution, we assume that 50 percent of the
mass lost from the primary leaves the system, carrying away the
specific angular momentum of the primary, and the remaining mass is
accreted on to the secondary during the RLOF. Also, we have studied
the distributions of the mass and orbital periods of hot subdwarfs
using the population synthesis approach.
Results. We have obtained the ranges of the initial parameters of progenitor
binaries and the properties of hot subdwarfs through the stable RLOF
channel of intermediate-mass binaries, e.g. mass, envelope mass and
age of hot subdwarfs. We have found that hot subdwarfs could be
formed through stable Roche lobe overflow at the main sequence and
Hertzsprung gap. We have also found that some subdwarf B or OB stars
have anomalously high mass (~1 ) with a thick
envelope (~0.07
– ~0.16) in our models. By
comparing our theoretical results with observations on the hot
subdwarfs in open clusters, we suggest that more hot subdwarfs in
binary systems might be found in open clusters in the future.
Key words: stars: subdwarfs / stars: horizontal-branch / stars: evolution / stars: formation
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.