Issue |
A&A
Volume 502, Number 2, August I 2009
|
|
---|---|---|
Page(s) | 695 - 703 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/200912463 | |
Published online | 02 July 2009 |
Spin-orbit misalignment in the HD 80606 planetary system *,**
1
School of Physics, University of Exeter, Exeter EX4 4QL, UK e-mail: fpont@astro.ex.ac.uk; fredericjpont@gmail.com
2
Institut d'Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France
3
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
4
Observatoire de Haute-Provence, 04870 Saint-Michel l'Observatoire, France
5
Laboratoire d'Astrophysique de Marseille, UMR 6110, CNRS & Univ. de Provence, 38 rue Frédéric Joliot-Curie, 13388 Marseille Cedex 13, France
6
Laboratoire d'Astrophysique, Observatoire de Grenoble, Université J. Fourier, BP 53, 38041 Grenoble Cedex 9, France
7
Université de Nice-Sophia Antipolis, Observatoire de la Côte d'Azur, CNRS UMR 6202, BP 4229, 06304 Nice Cedex 4, France
8
Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD21218, USA
9
Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland
10
Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
Received:
11
May
2009
Accepted:
30
June
2009
We recently reported the photometric and spectroscopic detection
of the primary transit of the 111-day-period, eccentric extra-solar planet HD 80606b,
at Observatoire de Haute-Provence, France.
The whole egress of the primary transit and a section of its central part were observed,
allowing the measurement of the planetary radius, and evidence for a spin-orbit
misalignment through the observation of the Rossiter-McLaughlin anomaly. The
ingress not having been observed for this long-duration transit, uncertainties
remained in the parameters of the system. We present here a refined, combined
analysis of our photometric and spectroscopic data, together with further published radial
velocities, ground-based photometry, and Spitzer photometry around the secondary eclipse,
as well as new photometric measurements of HD 80606 acquired at Mount Hopkins, Arizona, just before the beginning of the primary transit.
Although the transit is not detected in those new data, they provide an upper limit for the transit duration,
which narrows down the possible behaviour of the Rossiter-McLaughlin anomaly in the unobserved part of the transit.
We analyse the whole data with a Bayesian approach using a Markov-chain Monte Carlo integration on all available information.
We find for the planetary
radius, and a total primary transit duration of
h from first to fourth contact.
Our analysis reinforces the hypothesis of spin-orbit misalignment in this system (alignment excluded at >95% level), with a positive projected angle
between the planetary orbital axis and the stellar rotation (median solution
).
As HD 80606 is a component of a binary system, the peculiar
orbit of its planet could result from a Kozai mechanism.
Key words: stars: planetary systems
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.