Issue |
A&A
Volume 538, February 2012
|
|
---|---|---|
Article Number | A112 | |
Number of page(s) | 28 | |
Section | Catalogs and data | |
DOI | https://doi.org/10.1051/0004-6361/201116968 | |
Published online | 10 February 2012 |
Planetary transit candidates in the CoRoT LRa01 field⋆
1 Rheinisches Institut für Umweltforschung, Abteilung Planetenforschung, an der Universität zu Köln, Aachener Strasse 209, 50931 Köln, Germany
e-mail: lcarone@uni-koeln.de
2 Research and Scientific Support Department, ESTEC/ESA, PO Box 299, 2200 AG Noordwijk, The Netherlands
e-mail: davide.gandolfi@esa.int
3 Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany
4 Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, 12489 Berlin, Germany
5 LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92195 Meudon, France
6 Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain
7 Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
8 Space Research Institute, Austrian Academy of Science, Schmiedlstr. 6, 8042 Graz, Austria
9 Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
10 Observatoire de l’Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland
11 School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
12 Laboratoire d’Astrophysique de Marseille, CNRS & University of Provence, 38 rue Frédéric Joliot-Curie, 13388 Marseille Cedex 13, France
13 LESIA, Observatoire de Paris, Place Jules Janssen, 92195 Meudon Cedex, France
14 Institut d’Astrophysique Spatiale, Université Paris XI, 91405 Orsay, France
15 Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France
16 Observatoire de Haute Provence, 04670 Saint Michel l’Observatoire, France
17 McDonald Observatory, University of Texas at Austin, Austin, TX 78712, USA
18 Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
19 University of Vienna,Institute of Astronomy, Türkenschanzstrasse 17, 1180 Vienna, Austria
20 IAG, University of São Paulo, Brasil
21 Université de Nice-Sophia Antipolis, CNRS UMR 6202, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France
22 University of Liège, Allée du 6 août 17, Sart Tilman, Liège 1, Belgium
23 European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Santiago de Chile, Chile
24 School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
25 Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
26 Center for Astronomy and Astrophysics, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
27 Laboratoire d’Astronomie de Lille, Université de Lille 1, 1 impasse de l’Observatoire, 59000 Lille, France
28 Institut de Mécanique Céleste et de Calcul des Ephémérides, UMR 8028 du CNRS, 77 avenue Denfert-Rochereau, 75014 Paris, France
29 Observatório Nacional, Rio de Janeiro, Brazil
30 Las Cumbres Observatory Global Telescope Network, Inc., 6740 Cortona Drive, Suite 102, Santa Barbara, California 93117, USA
Received: 28 March 2011
Accepted: 10 October 2011
Context. CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose lightcurves have transit-like features. An extensive analytical and observational follow-up effort is undertaken to classify these candidates.
Aims. We present the list of planetary transit candidates from the CoRoT LRa01 star field in the Monoceros constellation toward the Galactic anti-center direction. The CoRoT observations of LRa01 lasted from 24 October 2007 to 3 March 2008.
Methods. We acquired and analyzed 7470 chromatic and 3938 monochromatic lightcurves. Instrumental noise and stellar variability were treated with several filtering tools by different teams from the CoRoT community. Different transit search algorithms were applied to the lightcurves.
Results. Fifty-one stars were classified as planetary transit candidates in LRa01. Thirty-seven (i.e., 73% of all candidates) are “good” planetary candidates based on photometric analysis only. Thirty-two (i.e., 87% of the “good” candidates) have been followed-up. At the time of writing twenty-two cases were solved and five planets were discovered: three transiting hot-Jupiters (CoRoT-5b, CoRoT-12b, and CoRoT-21b), the first terrestrial transiting planet (CoRoT-7b), and another planet in the same system (CoRoT-7c, detected by radial velocity survey only). Evidence of another non-transiting planet in the CoRoT-7 system, namely CoRoT-7d, was recently found as well.
Key words: techniques: spectroscopic / techniques: photometric / binaries: eclipsing / techniques: radial velocities / planetary systems
© ESO, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.